APPROXIMATION PROPERTIES OF MULTIVARIATE WAVELETS

RONG-QING JIA

Abstract

Wavelets are generated from refinable functions by using multiresolution analysis. In this paper we investigate the approximation properties of multivariate refinable functions. We give a characterization for the approximation order provided by a refinable function in terms of the order of the sum rules satisfied by the refinement mask. We connect the approximation properties of a refinable function with the spectral properties of the corresponding subdivision and transition operators. Finally, we demonstrate that a refinable function in $W_{1}^{k-1}\left(\mathbb{R}^{s}\right)$ provides approximation order k.

1. Introduction

We are concerned with functional equations of the form

$$
\begin{equation*}
\phi=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) \phi(M \cdot-\alpha), \tag{1.1}
\end{equation*}
$$

where ϕ is the unknown function defined on the s-dimensional Euclidean space \mathbb{R}^{s}, a is a finitely supported sequence on \mathbb{Z}^{s}, and M is an $s \times s$ integer matrix such that $\lim _{n \rightarrow \infty} M^{-n}=0$. The equation (1.1) is called a refinement equation, and the matrix M is called a dilation matrix. Correspondingly, the sequence a is called the refinement mask. Any function satisfying a refinement equation is called a refinable function.

If a satisfies

$$
\begin{equation*}
\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha)=m:=|\operatorname{det} M| \tag{1.2}
\end{equation*}
$$

then it is known that there exists a unique compactly supported distribution ϕ satisfying the refinement equation (1.1) subject to the condition $\hat{\phi}(0)=1$. This distribution is said to be the normalized solution to the refinement equation with mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in [7, Chap. 5] for the case in which the dilation matrix is 2 times the $s \times s$ identity matrix I. The same proof applies to the general refinement equation (1.1).

Wavelets are generated from refinable functions. In [20], Jia and Micchelli discussed how to construct multivariate wavelets from refinable functions associated

[^0]with a general dilation matrix. The approximation and smoothness properties of wavelets are determined by the corresponding refinable functions.

In [9], DeVore, Jawerth, and Popov established a basic theory for nonlinear approximation by wavelets. In their work, the refinement mask was required to be nonnegative. In [15], Jia extended their results and, in particular, removed the restriction of non-negativity of the mask.

Our goal is to characterize the approximation order provided by a refinable function in terms of the refinement mask. This information is important for our understanding of wavelet approximation.

Before proceeding further, we introduce some notation. A multi-index is an s tuple $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ with its components being nonnegative integers. The length of μ is $|\mu|:=\mu_{1}+\cdots+\mu_{s}$, and the factorial of μ is $\mu!:=\mu_{1}!\cdots \mu_{s}!$. For two multi-indices $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ and $\nu=\left(\nu_{1}, \ldots, \nu_{s}\right)$, we write $\nu \leq \mu$ if $\nu_{j} \leq \mu_{j}$ for $j=1, \ldots, s$. If $\nu \leq \mu$, then we define

$$
\binom{\mu}{\nu}:=\frac{\mu!}{\nu!(\mu-\nu)!} .
$$

For $j=1, \ldots, s, D_{j}$ denotes the partial derivative with respect to the j th coordinate. For $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right), D^{\mu}$ is the differential operator $D_{1}^{\mu_{1}} \cdots D_{s}^{\mu_{s}}$. Moreover, p_{μ} denotes the monomial given by

$$
p_{\mu}(x):=x_{1}^{\mu_{1}} \cdots x_{s}^{\mu_{s}}, \quad x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{s} .
$$

The total degree of p_{μ} is $|\mu|$. For a nonnegative integer k, we denote by Π_{k} the linear span of $\left\{p_{\mu}:|\mu| \leq k\right\}$. Then $\Pi:=\bigcup_{k=0}^{\infty} \Pi_{k}$ is the linear space of all polynomials of s variables. We agree that $\Pi_{-1}=\{0\}$.

The Fourier transform of an integrable function f on \mathbb{R}^{s} is defined by

$$
\hat{f}(\xi)=\int_{\mathbb{R}^{s}} f(x) e^{-i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{s}
$$

where $x \cdot \xi$ denotes the inner product of two vectors x and ξ in \mathbb{R}^{s}. The domain of the Fourier transform can be naturally extended to include compactly supported distributions.

We denote by $\ell\left(\mathbb{Z}^{s}\right)$ the linear space of all sequences on \mathbb{Z}^{s}, and by $\ell_{0}\left(\mathbb{Z}^{s}\right)$ the linear space of all finitely supported sequences on \mathbb{Z}^{s}. For $\alpha \in \mathbb{Z}^{s}$, we denote by δ_{α} the element in $\ell_{0}\left(\mathbb{Z}^{s}\right)$ given by $\delta_{\alpha}(\alpha)=1$ and $\delta_{\alpha}(\beta)=0$ for all $\beta \in \mathbb{Z}^{s} \backslash\{\alpha\}$. In particular, we write δ for δ_{0}. For $j=1, \ldots, s$, let e_{j} be the j th coordinate unit vector. The difference operator ∇_{j} on $\ell\left(\mathbb{Z}^{s}\right)$ is defined by $\nabla_{j} a:=a-a\left(\cdot-e_{j}\right)$, $a \in \ell\left(\mathbb{Z}^{s}\right)$. For a multi-index $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right), \nabla^{\mu}$ is the difference operator $\nabla_{1}^{\mu_{1}} \cdots \nabla_{s}^{\mu_{s}}$.

For a compactly supported distribution ϕ on \mathbb{R}^{s} and a sequence $b \in \ell\left(\mathbb{Z}^{s}\right)$, the semi-convolution of ϕ with b is defined by

$$
\phi *^{\prime} b:=\sum_{\alpha \in \mathbb{Z}^{s}} \phi(\cdot-\alpha) b(\alpha) .
$$

Let $\mathbb{S}(\phi)$ denote the linear space $\left\{\phi *^{\prime} b: b \in \ell\left(\mathbb{Z}^{s}\right)\right\}$. We call $\mathbb{S}(\phi)$ the shiftinvariant space generated by ϕ. More generally, if Φ is a finite collection of compactly supported distributions on \mathbb{R}^{s}, then we use $\mathbb{S}(\Phi)$ to denote the linear space of all distributions of the form $\sum_{\phi \in \Phi} \phi *^{\prime} b_{\phi}$, where $b_{\phi} \in \ell\left(\mathbb{Z}^{s}\right)$ for $\phi \in \Phi$.

Here is a brief outline of the paper. In Section 2 we clarify the relationship between the order of approximation provided by $\mathbb{S}(\phi)$ and the accuracy of ϕ, the
order of the polynomial space contained in $\mathbb{S}(\phi)$. In Section 3 we introduce the socalled sum rules and give a characterization for the accuracy of a refinable function in terms of the order of the sum rules satisfied by the refinement mask. In Section 4, several examples are provided to illustrate the general theory. Section 5 is devoted to a study of the subdivision and transition operators and their applications to approximation properties of refinable functions. Finally, in Section 6, we show that a refinable function in $W_{1}^{k}\left(\mathbb{R}^{s}\right)$ associated with an isotropic dilation matrix has accuracy at least $k+1$.

2. Approximation order and polynomial reproducibility

Let ϕ be a compactly supported function in $L_{p}\left(\mathbb{R}^{s}\right)(1 \leq p \leq \infty)$. In this section we clarify the relationship between the order of approximation provided by $\mathbb{S}(\phi)$ and the degree of the polynomial space contained in $\mathbb{S}(\phi)$. The reader is referred to [17] for a recent survey on approximation by shift-invariant spaces.

The norm in $L_{p}\left(\mathbb{R}^{s}\right)$ is denoted by $\|\cdot\|_{p}$. For an element $f \in L_{p}\left(\mathbb{R}^{s}\right)$ and a subset G of $L_{p}\left(\mathbb{R}^{s}\right)$, the distance from f to G, denoted by $\operatorname{dist}_{p}(f, G)$, is defined by

$$
\operatorname{dist}_{p}(f, G):=\inf _{g \in G}\|f-g\|_{p}
$$

Let $S:=\mathbb{S}(\phi) \cap L_{p}\left(\mathbb{R}^{s}\right)$. For $h>0$, let $S^{h}:=\{g(\cdot / h): g \in S\}$. For a real number $\kappa \geq 0$, we say that $\mathbb{S}(\phi)$ provides approximation order κ if for each sufficiently smooth function f in $L_{p}\left(\mathbb{R}^{s}\right)$, there exists a constant $C>0$ such that

$$
\operatorname{dist}_{p}\left(f, S^{h}\right) \leq C h^{\kappa} \quad \forall h>0 .
$$

We say that $\mathbb{S}(\phi)$ provides density order κ (see [3]) if for each sufficiently smooth function f in $L_{p}\left(\mathbb{R}^{s}\right)$,

$$
\lim _{h \rightarrow 0} \operatorname{dist}_{p}\left(f, S^{h}\right) / h^{\kappa}=0
$$

Let k be a positive integer. Suppose $\mathbb{S}(\phi) \supset \Pi_{k-1}$. Does $\mathbb{S}(\phi)$ always provide approximation order k ? The answer is a surprising no. The first counterexample was given by de Boor and Höllig in [4] by considering bivariate C^{1}-cubics. Their results can be described in terms of box splines.

For a comprehensive study of box splines, the reader is referred to the book [5] by de Boor, Höllig, and Riemenschneider. For our purpose, it suffices to consider the box splines $M_{r, s, t}$ given by

$$
\widehat{M}_{r, s, t}(\xi)=\left(\frac{1-e^{-i \xi_{1}}}{i \xi_{1}}\right)^{r}\left(\frac{1-e^{-i \xi_{2}}}{i \xi_{2}}\right)^{s}\left(\frac{1-e^{-i\left(\xi_{1}+\xi_{2}\right)}}{i\left(\xi_{1}+\xi_{2}\right)}\right)^{t}, \quad \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}
$$

where r, s, and t are nonnegative integers. It is easily seen that $M_{r, s, t} \in L_{\infty}\left(\mathbb{R}^{2}\right)$ if and only if $\min \{r+s, s+t, t+r\} \geq 1$. Let $\phi_{1}:=M_{2,1,2}$ and $\phi_{2}:=M_{1,2,2}$. In [4], de Boor and Höllig proved that $\mathbb{S}\left(\phi_{1}, \phi_{2}\right) \supseteq \Pi_{3}$ but $\mathbb{S}\left(\phi_{1}, \phi_{2}\right)$ does not provide $L_{\infty^{-}}$ approximation order 4 . In fact, the optimal L_{∞}-approximation order provided by $\mathbb{S}\left(\phi_{1}, \phi_{2}\right)$ is 3 . In [21], Ron showed that there exists a compactly supported function ψ in $\mathbb{S}\left(\phi_{1}, \phi_{2}\right)$ such that $\Pi_{3} \subseteq \mathbb{S}(\psi)$. Since $\mathbb{S}(\psi) \subseteq \mathbb{S}\left(\phi_{1}, \phi_{2}\right)$, the approximation order provided by $\mathbb{S}(\psi)$ is at most 3 .

In [6], de Boor and Jia extended the results in [4] in the following way. For $\rho=1,2, \ldots$, let k be an integer such that $2 \rho+2 \leq k \leq 3 \rho+1$. Let

$$
\Phi:=\left\{M_{r, s, t} \in C^{\rho}\left(\mathbb{R}^{2}\right): r+s+t \leq k+2\right\} .
$$

Then $\mathbb{S}(\Phi) \supset \Pi_{k}$, but the optimal L_{p}-approximation order $(1 \leq p \leq \infty)$ provided by $\mathbb{S}(\Phi)$ is k, not $k+1$.

However, if $\mathbb{S}(\phi)$ provides approximation order k, then $\mathbb{S}(\phi)$ contains Π_{k-1}. This was proved by Jia in [16]. Under the additional condition that $\hat{\phi}(0) \neq 0$, it was proved by Ron [21] that $\mathbb{S}(\phi)$ provides L_{∞}-approximation order k if and only if $\mathbb{S}(\phi)$ contains Π_{k-1}. In general, we have the following results, which were established in [16].

Theorem 2.1. Let $1 \leq p \leq \infty$, and let ϕ be a compactly supported function in $L_{p}\left(\mathbb{R}^{s}\right)$ with $\hat{\phi}(0) \neq 0$. For every positive integer k, the following statements are equivalent:
(a) $\mathbb{S}(\phi)$ provides approximation order k.
(b) $\mathbb{S}(\phi)$ provides density order $k-1$.
(c) $\mathbb{S}(\phi)$ contains Π_{k-1}.
(d) $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for all μ with $|\mu| \leq k-1$ and all $\beta \in \mathbb{Z}^{s} \backslash\{0\}$.

We remark that the implications $(\mathrm{a}) \Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$ are valid without the assumption $\hat{\phi}(0) \neq 0$. Indeed, $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is obvious, $(\mathrm{b}) \Rightarrow(\mathrm{c})$ was proved in [16], and the implication $(\mathrm{c}) \Rightarrow(\mathrm{d})$ was established in [2].

Suppose ϕ is the normalized solution of the refinement equation (1.1). If ϕ lies in $L_{p}\left(\mathbb{R}^{s}\right)$ for some $p, 1 \leq p \leq \infty$, then Theorem 2.1 applies to ϕ, because $\hat{\phi}(0)=1$. Thus, there are two questions of interest. The first question is how to determine whether ϕ lies in $L_{p}\left(\mathbb{R}^{s}\right)$, and the second problem is how to characterize the highest degree of polynomials contained in $\mathbb{S}(\phi)$. The first question was discussed by Han and Jia in [12]. In this paper, we concentrate on the second question. When we speak of polynomial containment, ϕ is not required to be an integrable function. Thus, we say that a compactly supported distribution ϕ on \mathbb{R}^{s} has accuracy k, if $\mathbb{S}(\phi) \supset \Pi_{k-1}$ (see [13] for the terminology of accuracy).

We point out that the equivalence between (c) and (d) in Theorem 2.1 remains true for every compactly supported distribution ϕ on \mathbb{R}^{s}.

If ϕ is a compactly supported continuous function on \mathbb{R}^{s}, and if ϕ satisfies condition (d), then it was proved in [14] that

$$
\begin{equation*}
\phi *^{\prime} p=\hat{\phi}(-i D) p \quad \forall p \in \Pi_{k-1} \tag{2.1}
\end{equation*}
$$

where i is the imaginary unit and $\hat{\phi}(-i D)$ denotes the differential operator given by the formal power series

$$
\sum_{\mu \geq 0} \frac{D^{\mu} \hat{\phi}(0)}{\mu!}(-i D)^{\mu}
$$

For a given polynomial $p, D^{\mu} p=0$ if $|\mu|$ is sufficiently large. Thus, $\hat{\phi}(-i D)$ is well defined on Π. We indicate that (2.1) is also valid for a compactly supported distribution ϕ on \mathbb{R}^{s} satisfying condition (d). To see this, choose a function $\rho \in$ $C_{c}^{\infty}\left(\mathbb{R}^{s}\right)$ such that $\hat{\rho}(0)=1$ and $D^{\nu} \hat{\rho}(0)=0$ for all ν with $0<|\nu| \leq k-1$. Let $\rho_{n}:=\rho(\cdot / n) / n^{s}$ for $n=1,2, \ldots$. Then for each $n, \phi_{n}:=\phi * \rho_{n}$, the convolution of ϕ with ρ_{n}, is a function in $C_{c}^{\infty}\left(\mathbb{R}^{s}\right)$. Moreover, the sequence $\left(\phi_{n}\right)_{n=1,2, \ldots}$ converges to ϕ in the sense that

$$
\lim _{n \rightarrow \infty}\left\langle\phi_{n}, f\right\rangle=\langle\phi, f\rangle \quad \forall f \in C_{c}^{\infty}\left(\mathbb{R}^{s}\right)
$$

See [1, p. 97] for these facts. Thus, we have $\hat{\phi}_{n}(\xi)=\hat{\phi}(\xi) \hat{\rho}_{n}(\xi)$ for $\xi \in \mathbb{R}^{s}$. Since ϕ satisfies condition (d), by using the Leibniz formula for differentiation, we get $D^{\mu} \hat{\phi}_{n}(2 \pi \beta)=0$ for $|\mu| \leq k-1$ and $\beta \in \mathbb{Z}^{s} \backslash\{0\}$. Hence (2.1) is applicable to ϕ_{n} and

$$
\phi_{n} *^{\prime} p=\hat{\phi}_{n}(-i D) p \quad \forall p \in \Pi_{k-1} .
$$

Letting $n \rightarrow \infty$ in the above equation, we obtain $\phi *^{\prime} p=\hat{\phi}(-i D) p$ for all $p \in \Pi_{k-1}$. Consequently, the linear mapping $\phi *^{\prime}$ given by $p \mapsto \phi *^{\prime} p$ maps Π_{k-1} to Π_{k-1}. If, in addition, $\hat{\phi}(0) \neq 0$, then this mapping is one-to-one, and hence it is onto. This shows that $(\mathrm{d}) \Rightarrow(\mathrm{c})$ is valid for every compactly supported distribution ϕ on \mathbb{R}^{s} with $\hat{\phi}(0) \neq 0$.

Next, we show that (c) \Rightarrow (d) for every compactly supported distribution ϕ on \mathbb{R}^{s}. If ϕ is a compactly supported continuous function on \mathbb{R}^{s}, this was proved in [2] and [14]. Let ϕ be a compactly supported distribution on \mathbb{R}^{s}. For a fixed element $\beta \in \mathbb{Z}^{s} \backslash\{0\}$, choose a function $\rho \in C_{c}^{\infty}\left(\mathbb{R}^{s}\right)$ such that $\hat{\rho}(0) \neq 0$ and $\hat{\rho}(2 \pi \beta) \neq 0$. Then the convolution $\phi * \rho$ is a function in $C_{c}^{\infty}\left(\mathbb{R}^{s}\right)$ and its Fourier transform is $\hat{\phi} \hat{\rho}$. Note that the mapping $\rho *$ given by $q \mapsto \rho * q$ maps Π_{k-1} to Π_{k-1}. Since $\hat{\rho}(0) \neq 0$, this mapping is one-to-one; hence it is onto. Thus, for $p \in \Pi_{k-1}$, we can find $q \in \Pi_{k-1}$ such that $p=\rho * q$. Since $\mathbb{S}(\phi) \supset \Pi_{k-1}$, there exists some $b \in \ell\left(\mathbb{Z}^{s}\right)$ such that $q=\phi *^{\prime} b$. It follows that $p=\rho *\left(\phi *^{\prime} b\right)=(\rho * \phi) *^{\prime} b$. This shows that $\mathbb{S}(\phi * \rho) \supset \Pi_{k-1}$. By what has been proved, $D^{\mu}(\hat{\phi} \hat{\rho})(2 \pi \beta)=0$ for all μ with $|\mu| \leq k-1$. Since $\hat{\rho}(2 \pi \beta) \neq 0$, we can write $\hat{\phi}=(\hat{\phi} \hat{\rho})(1 / \hat{\rho})$ in a neighborhood of $2 \pi \beta$. By applying the Leibniz formula for differentiation to this equation, we obtain $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for $|\mu| \leq k-1$. This shows that (c) \Rightarrow (d) for every compactly supported distribution ϕ on \mathbb{R}^{s}.

To summarize, a compactly supported distribution ϕ on \mathbb{R}^{s} with $\hat{\phi}(0) \neq 0$ possesses accuracy k if and only if $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for all μ with $|\mu| \leq k-1$ and all $\beta \in \mathbb{Z}^{s} \backslash\{0\}$.

3. Characterization of accuracy

The purpose of this section is to give a characterization for the accuracy of a refinable function in terms of the refinement mask.

For an $s \times s$ dilation matrix M, let Γ be a complete set of representatives of the distinct cosets of $\mathbb{Z}^{s} / M \mathbb{Z}^{s}$, and let Ω be a complete set of representatives of the distinct cosets of $\mathbb{Z}^{s} / M^{T} \mathbb{Z}^{s}$, where M^{T} denotes the transpose of M. Evidently, $\# \Gamma=\# \Omega=|\operatorname{det} M|$. Without loss of any generality, we may assume that $0 \in \Gamma$ and $0 \in \Omega$.

Suppose a is a finitely supported sequence on \mathbb{Z}^{s} satisfying (1.2). Let ϕ be the normalized solution of the refinement equation (1.1). Taking Fourier transform of both sides of (1.1), we obtain

$$
\begin{equation*}
\hat{\phi}(\xi)=H\left(\left(M^{T}\right)^{-1} \xi\right) \hat{\phi}\left(\left(M^{T}\right)^{-1} \xi\right), \quad \xi \in \mathbb{R}^{s} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
H(\xi):=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) e^{-i \alpha \cdot \xi} / m, \quad \xi \in \mathbb{R}^{s} \tag{3.2}
\end{equation*}
$$

Note that H is a 2π-periodic function and $H(0)=1$.

For a compactly supported distribution ϕ on \mathbb{R}^{s}, define

$$
N(\phi):=\left\{\xi \in \mathbb{R}^{s}: \hat{\phi}(\xi+2 \pi \beta)=0 \forall \beta \in \mathbb{Z}^{s}\right\} .
$$

If ϕ is a compactly supported function in $L_{p}\left(\mathbb{R}^{s}\right)(1 \leq p \leq \infty)$, then the shifts of ϕ are stable if and only if $N(\phi)$ is the empty set (see [19]).

Theorem 3.1. Let a be a finitely supported sequence on \mathbb{Z}^{s} satisfying (1.2), and let H be the function given in (3.2). If

$$
\begin{equation*}
D^{\mu} H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=0 \quad \forall \omega \in \Omega \backslash\{0\} \text { and }|\mu| \leq k-1, \tag{3.3}
\end{equation*}
$$

then the normalized solution ϕ of the refinement equation (1.1) has accuracy k. Conversely, if ϕ has accuracy k, and if $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$, then (3.3) holds true.

Proof. Suppose that (3.3) is satisfied. Since H is 2π-periodic, (3.3) implies

$$
\begin{equation*}
D^{\mu} H\left(2 \pi\left(M^{T}\right)^{-1} \beta\right)=0 \quad \forall \beta \in \mathbb{Z}^{s} \backslash\left(M^{T} \mathbb{Z}^{s}\right) \text { and }|\mu| \leq k-1 \tag{3.4}
\end{equation*}
$$

Let f and g be the functions given by

$$
f(\xi):=H\left(\left(M^{T}\right)^{-1} \xi\right) \quad \text { and } \quad g(\xi):=\hat{\phi}\left(\left(M^{T}\right)^{-1} \xi\right), \quad \xi \in \mathbb{R}^{s} .
$$

For $|\mu| \leq k-1$ and $\beta \in \mathbb{Z}^{s} \backslash\{0\}$, applying the Leibniz formula for differentiation to (3.1), we obtain

$$
\begin{equation*}
D^{\mu} \hat{\phi}(2 \pi \beta)=\sum_{\nu \leq \mu}\binom{\mu}{\nu} D^{\nu} f(2 \pi \beta) D^{\mu-\nu} g(2 \pi \beta) \tag{3.5}
\end{equation*}
$$

By using the chain rule, we see that $D^{\nu} f(2 \pi \beta)$ is a linear combination of terms of the form $D^{\alpha} H\left(2 \pi\left(M^{T}\right)^{-1} \beta\right.$), where $\alpha \leq \nu$. In light of (3.4), these terms are equal to 0 if $\beta \in \mathbb{Z}^{s} \backslash\left(M^{T} \mathbb{Z}^{s}\right)$. This shows that $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for $\beta \in \mathbb{Z}^{s} \backslash\left(M^{T} \mathbb{Z}^{s}\right)$.

We shall prove that, for $r=0,1, \ldots, D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for $\beta \in\left(\left(M^{T}\right)^{r} \mathbb{Z}^{s}\right) \backslash$ $\left(\left(M^{T}\right)^{r+1} \mathbb{Z}^{s}\right)$. This will be done by induction on r. The case $r=0$ was established above. Suppose $r \geq 1$ and our claim has been verified for $r-1$. Let $\beta \in\left(\left(M^{T}\right)^{r} \mathbb{Z}^{s}\right) \backslash$ $\left(\left(M^{T}\right)^{r+1} \mathbb{Z}^{s}\right)$. Then we have $\left(M^{T}\right)^{-1} \beta \in\left(\left(M^{T}\right)^{r-1} \mathbb{Z}^{s}\right) \backslash\left(\left(M^{T}\right)^{r} \mathbb{Z}^{s}\right)$. Hence, by the induction hypothesis, $D^{\mu} \hat{\phi}\left(2 \pi\left(M^{T}\right)^{-1} \beta\right)=0$ for $|\mu| \leq k-1$. Consequently, $D^{\mu} g(2 \pi \beta)=0$ for all μ with $|\mu| \leq k-1$. This in connection with (3.5) tells us that $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for $|\mu| \leq k-1$, thereby completing the induction procedure. The sufficiency part of the theorem has been established.

Conversely, suppose ϕ has accuracy k and $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$. Then

$$
D^{\mu} \hat{\phi}(2 \pi \beta)=0 \quad \forall \beta \in \mathbb{Z}^{s} \backslash\{0\} \text { and }|\mu| \leq k-1
$$

Let $\omega \in \Omega \backslash\{0\}$. Since $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$, there exists some $\beta \in \mathbb{Z}^{s}$ such that $\hat{\phi}(\gamma) \neq 0$ for $\gamma:=2 \pi \beta+2 \pi\left(M^{T}\right)^{-1} \omega$. Thus, the following identity is valid for ξ in a neighborhood of γ :

$$
H(\xi)=\hat{\phi}\left(M^{T} \xi\right)[1 / \hat{\phi}(\xi)]
$$

Let h be the function given by $\xi \mapsto \hat{\phi}\left(M^{T} \xi\right), \xi \in \mathbb{R}^{s}$. By using the Leibniz formula for differentiation, we obtain

$$
D^{\mu} H(\gamma)=\sum_{\nu \leq \mu}\binom{\mu}{\nu} D^{\nu} h(\gamma) D^{\mu-\nu}[1 / \hat{\phi}](\gamma)
$$

By the chain rule, $D^{\nu} h(\gamma)$ is a linear combination of terms of the form $D^{\alpha} \hat{\phi}\left(M^{T} \gamma\right)$, where $\alpha \leq \nu$. Note that

$$
M^{T} \gamma=M^{T}\left(2 \pi \dot{\beta}+2 \pi\left(M^{T}\right)^{-1} \omega\right)=2 \pi\left(M^{T}\right) \beta+2 \pi \omega \in 2 \pi \mathbb{Z}^{s} \backslash\{0\}
$$

Hence $D^{\alpha} \hat{\phi}\left(M^{T} \gamma\right)=0$ for $|\alpha| \leq k-1$, because ϕ has accuracy k. Therefore we obtain $D^{\mu} H\left(2 \pi \beta+2 \pi\left(M^{T}\right)^{-1} \omega\right)=0$ for $|\mu| \leq k-1$. But H is 2π-periodic. This shows that $D^{\mu} H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=0$ for all $\omega \in \Omega \backslash\{0\}$ and $|\mu| \leq k-1$, as desired. The proof of the theorem is complete.

In the rest of this section we shall show that (3.3) is equivalent to saying that, for all $p \in \Pi_{k-1}$,

$$
\begin{equation*}
\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta) p(M \beta)=\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta+\gamma) p(M \beta+\gamma) \quad \forall \gamma \in \Gamma . \tag{3.6}
\end{equation*}
$$

For this purpose, we first establish the following lemma.
Lemma 3.2. The matrix

$$
\begin{equation*}
\frac{1}{\sqrt{m}}\left(e^{i 2 \pi M^{-1} \gamma \cdot \omega}\right)_{\gamma \in \Gamma, \omega \in \Omega} \tag{3.7}
\end{equation*}
$$

is a unitary one.
Proof. Let $\gamma \in \Gamma \backslash\{0\}$. We claim that there exists some $\omega^{\prime} \in \Omega$ such that $M^{-1} \gamma \cdot \omega^{\prime} \notin$ \mathbb{Z}. Any element $\beta \in \mathbb{Z}^{s}$ can be represented as $M^{T} \alpha+\omega$ for some $\alpha \in \mathbb{Z}^{s}$ and $\omega \in \Omega$. Note that $\left(M^{-1} \gamma\right) \cdot\left(M^{T} \alpha\right)=\gamma \cdot \alpha \in \mathbb{Z}$ for all $\alpha \in \mathbb{Z}^{s}$. Hence $M^{-1} \gamma \cdot \omega^{\prime} \in \mathbb{Z}$ for all $\omega^{\prime} \in \Omega$ implies that $M^{-1} \gamma \cdot \beta \in \mathbb{Z}$ for all $\beta \in \mathbb{Z}^{s}$. In other words, $M^{-1} \gamma \in \mathbb{Z}^{s}$, and hence $\gamma \in M \mathbb{Z}^{s}$, which contradicts the assumption $\gamma \in \Gamma \backslash\{0\}$. This verifies our claim.

For a fixed element γ in $\Gamma \backslash\{0\}$, let

$$
\sigma:=\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1} \gamma \cdot \omega} .
$$

Choose $\omega^{\prime} \in \Omega$ such that $M^{-1} \gamma \cdot \omega^{\prime} \notin \mathbb{Z}$. We have

$$
e^{i 2 \pi M^{-1} \gamma \cdot \omega^{\prime}} \sigma=\sum_{\omega \in \Omega} e^{i 2 \pi\left(M^{-1} \gamma\right) \cdot\left(\omega+\omega^{\prime}\right)}=\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1} \gamma \cdot \omega}=\sigma .
$$

Since $e^{i 2 \pi M^{-1} \gamma \cdot \omega^{\prime}} \neq 1$, it follows that $\sigma=0$. This shows that

$$
\begin{equation*}
\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1} \gamma \cdot \omega}=0 \quad \forall \gamma \in \Gamma \backslash\{0\} \tag{3.8}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\sum_{\gamma \in \Gamma} e^{i 2 \pi M^{-1} \gamma \cdot \omega}=0 \quad \forall \omega \in \Omega \backslash\{0\} . \tag{3.9}
\end{equation*}
$$

Finally, the matrix in (3.7) is unitary if and only if for every pair of elements $\gamma, \gamma^{\prime} \in \Gamma$,

$$
\frac{1}{m} \sum_{\omega \in \Omega} e^{i 2 \pi M^{-1}\left(\gamma-\gamma^{\prime}\right) \cdot \omega}= \begin{cases}1 & \text { if } \gamma=\gamma^{\prime} \\ 0 & \text { if } \gamma \neq \gamma^{\prime}\end{cases}
$$

For $\gamma=\gamma^{\prime}$, this comes from the fact $\# \Omega=m$; for $\gamma \neq \gamma^{\prime}$, this follows from (3.8).

Lemma 3.3. Let a be a finitely supported sequence satisfying (1.2), and let H be the function given in (3.2). Then the following two conditions are equivalent for every polynomial p :
(a) $p(i D) H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=0$ for all $\omega \in \Omega \backslash\{0\}$.
(b) $\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta) p(M \beta)=\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta+\gamma) p(M \beta+\gamma)$ for all $\gamma \in \Gamma$.

Proof. By (3.2) we have

$$
m p(i D) H(\xi)=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) p(\alpha) e^{-i \alpha \cdot \xi}, \quad \xi \in \mathbb{R}^{s}
$$

An element $\alpha \in \mathbb{Z}^{s}$ can be written uniquely as $M \beta+\gamma$ with $\beta \in \mathbb{Z}^{s}$ and $\gamma \in \Gamma$. Observe that, for $\xi:=2 \pi\left(M^{T}\right)^{-1} \omega$,

$$
-i \alpha \cdot \xi=-i(M \beta+\gamma) \cdot 2 \pi\left(M^{T}\right)^{-1} \omega=-i 2 \pi \beta \cdot \omega-i 2 \pi \gamma \cdot\left(M^{T}\right)^{-1} \omega
$$

Hence we have

$$
\begin{equation*}
m p(i D) H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=\sum_{\gamma \in \Gamma} b(\gamma) e^{-i 2 \pi \gamma \cdot\left(M^{T}\right)^{-1} \omega} \tag{3.10}
\end{equation*}
$$

where

$$
b(\gamma):=\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta+\gamma) p(M \beta+\gamma)
$$

Condition (b) says that $b(\gamma)=b(0)$ for all $\gamma \in \Gamma$. Hence by (3.9) we deduce from (3.10) that

$$
m p(i D) H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=b(0) \sum_{\gamma \in \Gamma} e^{-i 2 \pi \gamma \cdot\left(M^{T}\right)^{-1} \omega}=0
$$

for all $\omega \in \Omega \backslash\{0\}$. This shows that (b) \Rightarrow (a).
Conversely, (3.10) tells us that condition (a) implies

$$
\sum_{\gamma \in \Gamma} b(\gamma) e^{-i 2 \pi M^{-1} \gamma \cdot \omega}=0 \quad \forall \omega \in \Omega \backslash\{0\}
$$

Let η be an element of Γ. Then it follows that

$$
\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1} \eta \cdot \omega} \sum_{\gamma \in \Gamma} b(\gamma) e^{-i 2 \pi M^{-1} \gamma \cdot \omega}=\sum_{\gamma \in \Gamma} b(\gamma) .
$$

On the other hand,

$$
\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1} \eta \cdot \omega} \sum_{\gamma \in \Gamma} b(\gamma) e^{-i 2 \pi M^{-1} \gamma \cdot \omega}=\sum_{\gamma \in \Gamma} b(\gamma) \sum_{\omega \in \Omega} e^{i 2 \pi M^{-1}(\eta-\gamma) \cdot \omega}=m b(\eta),
$$

since $\sum_{\omega \in \Omega} e^{i 2 \pi M^{-1}(\eta-\gamma) \cdot \omega}=0$ for $\gamma \neq \eta$, by Lemma 3.2. This shows $m b(\eta)=$ $\sum_{\gamma \in \Gamma} b(\gamma)$. Therefore $b(\eta)=b(0)$ for all $\eta \in \Gamma$. In other words, (a) implies (b).

If an element $a \in \ell_{0}\left(\mathbb{Z}^{s}\right)$ satisfies (3.6) for all $p \in \Pi_{k-1}$, then we say that a satisfies the sum rules of order k. The results of this section can be summarized as follows: If the refinement mask a satisfies the sum rules of order k, then the normalized solution ϕ of the refinement equation with mask a has accuracy k. Conversely, if ϕ has accuracy k, and if $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$, then a satisfies the sum rules of order k.

4. EXAMPLES

In this section we give several examples to illustrate the general theory.
The symbol of a sequence $a \in \ell_{0}\left(\mathbb{Z}^{s}\right)$ is the Laurent polynomial $\tilde{a}(z)$ given by

$$
\tilde{a}(z):=\sum_{\alpha \in \mathbb{Z}^{s}} a(\alpha) z^{\alpha}, \quad z \in(\mathbb{C} \backslash\{0\})^{s}
$$

where $z^{\alpha}:=z_{1}^{\alpha_{1}} \cdots z_{s}^{\alpha_{s}}$ for $z=\left(z_{1}, \ldots, z_{s}\right) \in \mathbb{C}^{s}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{Z}^{s}$. If a is supported on $[0, N]^{s}$ for some positive integer N, then $\tilde{a}(z)$ is a polynomial of z.

In the univariate case $(s=1)$, if a satisfies the sum rules of order k, then $\tilde{a}(z)$ is divisible by $(1+z)^{k}$ (see, e.g., [8]). In the multivariate case $(s>1)$, this is no longer true.

Example 4.1. Let $s=2$ and $M=2 I$, where I is the 2×2 identity matrix. Let a be the sequence on \mathbb{Z}^{2} given by its symbol

$$
\tilde{a}(z):=z_{1}^{2}+z_{2}+z_{1} z_{2}+z_{1} z_{2}^{2} .
$$

Then a satisfies the sum rules of order 1 . But the polynomial $\tilde{a}(z)$ is irreducible.
It is easy to verify that a satisfies the sum rules of order 1 . Let us show that $\tilde{a}(z)$ is irreducible. Suppose to the contrary that $\tilde{a}(z)$ is reducible. Then $\tilde{a}(z)$ can be factored as

$$
\tilde{a}(z)=f(z) g(z)
$$

where f and g are polynomials of (total) degree at least 1 . Since the degree of $\tilde{a}(z)$ is 3 , the degree of either f or g is 1 . Suppose the degree of f is 1 and

$$
f\left(z_{1}, z_{2}\right)=\lambda z_{1}+\mu z_{2}+\nu
$$

where λ, μ, ν are complex numbers and either $\lambda \neq 0$ or $\mu \neq 0$. If $\lambda \neq 0$, then for all $z_{2} \in \mathbb{C}, f\left(-\left(\mu z_{2}+\nu\right) / \lambda, z_{2}\right)=0$, and so

$$
\tilde{a}\left(-\left(\mu z_{2}+\nu\right) / \lambda, z_{2}\right)=0 \quad \forall z_{2} \in \mathbb{C} .
$$

If $\mu \neq 0$, then $\tilde{a}\left(-\left(\mu z_{2}+\nu\right) / \lambda, z_{2}\right)$ is a polynomial of z_{2} of degree 3 with $-\mu / \lambda$ being its leading coefficient. Hence $\mu=0$. But it is also impossible that $\tilde{a}\left(-\nu / \lambda, z_{2}\right)=0$ for all $z_{2} \in \mathbb{C}$. Thus, we must have $\lambda=0$, and hence $\tilde{a}\left(z_{1},-\nu / \mu\right)=0$ for all $z_{1} \in \mathbb{C}$. However, $\tilde{a}\left(z_{1},-\nu / \mu\right)$ is a polynomial of z_{1} of degree 2 with 1 being its leading coefficient. This contradiction shows that $\tilde{a}(z)$ is irreducible.

Let a be the sequence given as above, and let ϕ be the normalized solution of the refinement equation

$$
\phi=\sum_{\alpha \in \mathbb{Z}^{2}} a(\alpha) \phi(2 \cdot-\alpha) .
$$

Then ϕ lies in $L_{2}\left(\mathbb{R}^{2}\right)$. This can be verified by using the results in [12]. Let b be the element in $\ell_{0}\left(\mathbb{Z}^{2}\right)$ given by its symbol

$$
\tilde{b}(z):=|\tilde{a}(z)|^{2} / 4 \quad \text { for }\left|z_{1}\right|=1 \text { and }\left|z_{2}\right|=1
$$

We have

$$
\begin{aligned}
4 \tilde{b}(z)=4 & +z_{1}+z_{1}^{-1}+z_{2}+z_{2}^{-1}+z_{1} z_{2}+z_{1}^{-1} z_{2}^{-1} \\
& +z_{1} z_{2}^{-1}+z_{1}^{-1} z_{2}+z_{1} z_{2}^{-2}+z_{1}^{-1} z_{2}^{2}+z_{1}^{2} z_{2}^{-1}+z_{1}^{-2} z_{2}
\end{aligned}
$$

Let B be the linear operator on $\ell_{0}\left(\mathbb{Z}^{2}\right)$ given by

$$
B v(\alpha):=\sum_{\beta \in \mathbb{Z}^{2}} b(2 \alpha-\beta) v(\beta), \quad \alpha \in \mathbb{Z}^{2}
$$

where $v \in \ell_{0}\left(\mathbb{Z}^{2}\right)$. Let W be the B-invariant subspace generated by $-\delta_{-e_{1}}+2 \delta-\delta_{e_{1}}$ and $-\delta_{-e_{2}}+2 \delta-\delta_{e_{2}}$. Then the spectral radius ρ of the linear operator $\left.B\right|_{W}$ is $3 / 4$. Since $\rho<1$, by [12, Theorems 3.3 and 4.1], the subdivision scheme associated with a is L_{2}-convergent. Therefore, $\phi \in L_{2}\left(\mathbb{R}^{2}\right)$ and the shifts of ϕ are orthonormal (see [11]). We conclude that the optimal order of approximation provided by $\mathbb{S}(\phi)$ is 1 .

If the refinement mask a satisfies the sum rules of order k, then the normalized solution ϕ of the refinement equation with mask a has accuracy k. However, if the condition $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$ is not satisfied, then ϕ could have higher accuracy. For instance, the function ϕ on \mathbb{R} given by $\phi(x)=1 / 2$ for $0 \leq x<2$ and $\phi(x)=0$ for $x \in \mathbb{R} \backslash[0,2)$ satisfies the refinement equation

$$
\phi=\sum_{\alpha \in \mathbb{Z}} a(\alpha) \phi(2 \cdot-\alpha),
$$

where the symbol of the mask a is $\tilde{a}(z)=1+z^{2}$. Then a does not satisfy the sum rules of order 1 . But ϕ has accuracy 1 , and $\mathbb{S}(\phi)$ provides L_{∞}-approximation order 1. The following is an example in the two-dimensional case.

Example 4.2. Let ϕ be the Zwart-Powell element defined by its Fourier transform

$$
\hat{\phi}\left(\xi_{1}, \xi_{2}\right):=g\left(\xi_{1}\right) g\left(\xi_{2}\right) g\left(\xi_{1}+\xi_{2}\right) g\left(-\xi_{1}+\xi_{2}\right), \quad\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}
$$

where g is the function on \mathbb{R} given by $\xi \mapsto\left(1-e^{-i \xi}\right) /(i \xi), \xi \in \mathbb{R}$. Then ϕ is a compactly supported continuous function on \mathbb{R}^{2} and $\mathbb{S}(\phi)$ provides L_{∞}-approximation order 3. On the other hand, ϕ is refinable but the corresponding mask does not satisfy the sum rules of order 3 .

For the first statement the reader is referred to [5, p. 72]. Let us verify the second statement. From [5, p. 140] we know that the Zwart-Powell element ϕ is refinable and the corresponding mask a is given by $a(\alpha)=0$ for $\alpha \in \mathbb{Z}^{2} \backslash[-1,2] \times[0,3]$ and

$$
\left(a\left(\alpha_{1}, \alpha_{2}\right)\right)_{-1 \leq \alpha_{1} \leq 2,0 \leq \alpha_{2} \leq 3}=\frac{1}{4}\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 2 & 2 & 1 \\
1 & 2 & 2 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

Evidently, the mask a satisfies the sum rules of order 2, but a does not satisfy the sum rules of order 3 . Note that $(\pi, \pi) \in N(\phi)$ in this case.

Example 4.3. Let M be the matrix

$$
\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right)
$$

and let a be the sequence on \mathbb{Z}^{2} such that $a(\alpha)=0$ for $\alpha \in \mathbb{Z}^{2} \backslash[-2,2]^{2}$ and

$$
\left(a\left(\alpha_{1}, \alpha_{2}\right)\right)_{-2 \leq \alpha_{1}, \alpha_{2} \leq 2}=\frac{1}{32}\left[\begin{array}{rrrrr}
0 & -1 & 0 & -1 & 0 \\
-1 & 0 & 10 & 0 & -1 \\
0 & 10 & 32 & 10 & 0 \\
-1 & 0 & 10 & 0 & -1 \\
0 & -1 & 0 & -1 & 0
\end{array}\right] .
$$

Let ϕ be the normalized solution of the refinement equation (1.1) with mask a and dilation matrix M given as above. Then ϕ is a compactly supported continuous function on \mathbb{R}^{2}, and the optimal approximation order provided by $\mathbb{S}(\phi)$ is 4.

Let us verify that a satisfies the sum rules of order 4 . We observe that $\alpha=$ $\left(\alpha_{1}, \alpha_{2}\right)$ lies in $M \mathbb{Z}^{2}$ if and only if $\alpha_{1}+\alpha_{2}$ is an even integer. Hence the sum rule for a polynomial p of two variables reads as follows:

$$
\sum_{\alpha_{1}+\alpha_{2} \in 2 \mathbb{Z}} p(\alpha) a(\alpha)=\sum_{\beta_{1}+\beta_{2} \notin 2 \mathbb{Z}} p(\beta) a(\beta)
$$

that is,

$$
32 p(0,0)=10 \sum_{\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=1} p\left(\alpha_{1}, \alpha_{2}\right)-\sum_{\left|\alpha_{1}\right|+\left|\alpha_{2}\right|=3} p\left(\alpha_{1}, \alpha_{2}\right) .
$$

We can easily verify that this condition is satisfied for all $p \in \Pi_{3}$, but it is not satisfied for the monomial p given by $p\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2},\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$. Therefore the refinement mask a satisfies the sum rules of order 4 , but not of order 5 .

In the present case, $\Omega:=\{(0,0),(1,0)\}$ is a complete set of representatives of the distinct cosets of $\mathbb{Z}^{2} / M^{T} \mathbb{Z}^{2}$. We have $2 \pi\left(M^{T}\right)^{-1} \Omega=\{(0,0),(\pi, \pi)\}$. Since $\hat{\phi}(0,0)=1$, in order to verify the condition $N(\phi) \cap\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$, it suffices to show that $\hat{\phi}(\pi, \pi) \neq 0$. For this purpose, we observe that

$$
\hat{\phi}(\xi)=\prod_{k=1}^{\infty} H\left(\left(M^{T}\right)^{-k} \xi\right), \quad \xi \in \mathbb{R}^{2}
$$

where

$$
\begin{aligned}
& H(\xi)=\left[32+20\left(\cos \xi_{1}+\cos \xi_{2}\right)-4 \cos \left(2 \xi_{1}+\xi_{2}\right)-4 \cos \left(\xi_{1}+2 \xi_{2}\right)\right] / 64 \\
& \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}
\end{aligned}
$$

We have $\left(M^{T}\right)^{-1}(\pi, \pi)^{T}=(0, \pi)^{T}$ and $H(0, \pi)>0$. Suppose

$$
\left(\eta_{1}, \eta_{2}\right)^{T}=\left(M^{T}\right)^{-k}(\pi, \pi)^{T}
$$

for some integer $k \geq 2$. Then $\left|\eta_{1}\right| \leq \pi / 2$ and $\left|\eta_{2}\right| \leq \pi / 2$, so $H\left(\eta_{1}, \eta_{2}\right)>0$. It follows that $\hat{\phi}(\pi, \pi) \neq 0$. Consequently, the exact accuracy of ϕ is 4 .

By using the methods in [12], we can easily prove that the subdivision scheme associated with mask a and dilation matrix M converges uniformly. Consequently, ϕ is a continuous function. We conclude that the optimal approximation order provided by $\mathbb{S}(\phi)$ is 4 .

5. The subdivision and transition operators

We introduce two linear operators associated with a refinement equation. One is the subdivision operator, and the other is the transition operator. When the dilation matrix M is 2 times the identity matrix, the spectral properties of the subdivision and transition operators were studied in [10] and [18]. In this section, we extend the study to the case in which M is a general dilation matrix.

Let X and Y be two linear spaces, and T a linear mapping from X to Y. The kernel of T, denoted by $\operatorname{ker}(T)$, is the subspace of X consisting of all $x \in X$ such that $T x=0$.

Let a be an element in $\ell_{0}\left(\mathbb{Z}^{s}\right)$ and let M be a dilation matrix. The subdivision operator S_{a} is the linear operator on $\ell\left(\mathbb{Z}^{s}\right)$ defined by

$$
S_{a} u(\alpha):=\sum_{\beta \in \mathbb{Z}^{s}} a(\alpha-M \beta) u(\beta), \quad \alpha \in \mathbb{Z}^{s}
$$

where $u \in \ell\left(\mathbb{Z}^{s}\right)$. The transition operator T_{a} is the linear operator on $\ell_{0}\left(\mathbb{Z}^{s}\right)$ defined by

$$
T_{a} v(\alpha):=\sum_{\beta \in \mathbb{Z}^{s}} a(M \alpha-\beta) v(\beta), \quad \alpha \in \mathbb{Z}^{s},
$$

where $v \in \ell_{0}\left(\mathbb{Z}^{s}\right)$.
The following theorem shows that the subdivision operator S_{a} and the transition operator T_{a} have the same nonzero eigenvalues. We use I and I_{0} to denote the identity mapping on $\ell\left(\mathbb{Z}^{s}\right)$ and $\ell_{0}\left(\mathbb{Z}^{s}\right)$, respectively.

Theorem 5.1. The transition operator T_{a} has only finitely many nonzero eigenvalues. For $\sigma \in \mathbb{C} \backslash\{0\}$, the linear spaces $\operatorname{ker}\left(S_{a}-\sigma I\right)$ and $\operatorname{ker}\left(T_{a}-\sigma I_{0}\right)$ have the same dimension. In particular, σ is an eigenvalue of S_{a} if and only if it is an eigenvalue of T_{a}.
Proof. For $N=1,2, \ldots$, let E_{N} denote the cube $[-N, N]^{s}$. Choose N such that E_{N-1} contains $\operatorname{supp} a:=\left\{\alpha \in \mathbb{Z}^{s}: a(\alpha) \neq 0\right\}$. Let $K:=\sum_{n=1}^{\infty} M^{-n} E_{N}$. In other words, x belongs to K if and only if $x=\sum_{n=1}^{\infty} M^{-n} y_{n}$ for some sequence of elements $y_{n} \in E_{N}$. Let $\ell(K)$ denote the linear space of all (finite) sequences on $K \cap \mathbb{Z}^{s}$. Consider the linear mapping A on $\ell(K)$ given by

$$
A v(\alpha):=\sum_{\beta \in K \cap \mathbb{Z}^{s}} a(M \alpha-\beta) v(\beta), \quad \alpha \in K \cap \mathbb{Z}^{s}
$$

where $v \in \ell(K)$. The dual mapping A^{\prime} of A is given by

$$
A^{\prime} u(\beta):=\sum_{\alpha \in K \cap \mathbb{Z}^{s}} u(\alpha) a(M \alpha-\beta), \quad \beta \in K \cap \mathbb{Z}^{s},
$$

where $u \in \ell(K)$. Let I_{K} denote the identity mapping on $\ell(K)$. Since $\ell(K)$ is finite dimensional, we have

$$
\operatorname{dim}\left(\operatorname{ker}\left(A-\sigma I_{K}\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(A^{\prime}-\sigma I_{K}\right)\right)
$$

Thus, in order to establish the theorem, it suffices to prove the following two relations:

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker}\left(T_{a}-\sigma I_{0}\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(A-\sigma I_{K}\right)\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker}\left(S_{a}-\sigma I\right)\right)=\operatorname{dim}\left(\operatorname{ker}\left(A^{\prime}-\sigma I_{K}\right)\right) \tag{5.2}
\end{equation*}
$$

For this purpose, we introduce the sets $K_{j}(j=0,1, \ldots)$ as follows:

$$
K_{j}:=M^{j-1} E_{1}+\cdots+E_{1}+K .
$$

In particular, $K_{0}=K$. Evidently, $K_{j} \subseteq K_{j+1}$ for $j=0,1, \ldots$, and $\mathbb{R}^{s}=\bigcup_{j=0}^{\infty} K_{j}$. Moreover,

$$
\begin{equation*}
M^{-1}\left(K_{j}+\operatorname{supp} a\right) \subseteq K_{j-1}, \quad j=1,2, \ldots \tag{5.3}
\end{equation*}
$$

Indeed, we have $M^{-1} K+M^{-1} E_{N}=K$, and hence

$$
\begin{aligned}
M^{-1}\left(K_{j}+\operatorname{supp} a\right) & \subseteq M_{;}^{j-2} E_{1}+\cdots+E_{1}+M^{-1} E_{1}+M^{-1} K+M^{-1} E_{N-1} \\
& \subseteq K_{j-1}
\end{aligned}
$$

Suppose $\sigma \neq 0$ and $v \in \operatorname{ker}\left(T_{a}-\sigma I_{0}\right)$. Then supp $v \subseteq K_{j}$ for some $j \geq 1$. We observe that $T_{a} v(\alpha) \neq 0$ implies $M \alpha-\beta \in \operatorname{supp} a$ for some $\beta \in K_{j}$. It follows that $\alpha \in M^{-1}\left(\operatorname{supp} a+K_{j}\right) \subseteq K_{j-1}$, by (5.3). In other words, $\operatorname{supp}\left(T_{a} v\right) \subseteq K_{j-1}$. Using this relation repeatedly, we obtain $\operatorname{supp}\left(T_{a}^{j} v\right) \subseteq K$. But $v=T_{a} v / \sigma=\left(T_{a}^{j} v\right) / \sigma^{j}$. Therefore, $\operatorname{supp} v \subseteq K$, and $\left.v\right|_{K \cap \mathbb{Z}^{s}}$ belongs to $\operatorname{ker}\left(A-\sigma I_{K}\right)$. This shows that the restriction mapping $P:\left.v \mapsto v\right|_{K \cap \mathbb{Z}^{s}}$ maps $\operatorname{ker}\left(T_{a}-\sigma I_{0}\right)$ to $\operatorname{ker}\left(A-\sigma I_{K}\right)$. Moreover, $\left.v\right|_{K \cap \mathbb{Z}^{s}}=0$ implies $v=0$. So P is one-to-one. Let us show that P is also onto. Suppose $A w=\sigma w$ for some $w \in \ell(K)$. Define $v(\alpha):=w(\alpha)$ for $\alpha \in K \cap \mathbb{Z}^{s}$ and $v(\alpha):=0$ for $\alpha \in \mathbb{Z}^{s} \backslash K$. Then $T_{a} v=\sigma v$. Thus, P is one-to-one and onto, thereby establishing (5.1).

In order to prove (5.2), we consider the mapping $Q:\left.u \mapsto u^{*}\right|_{K \cap \mathbb{Z}^{s}}$, where u^{*} is the sequence given by $u^{*}(\alpha):=u(-\alpha), \alpha \in \mathbb{Z}^{s}$. Suppose $u \in \operatorname{ker}\left(S_{a}-\sigma I\right)$. Then

$$
u(\alpha)=\frac{1}{\sigma} \sum_{\beta \in \mathbb{Z}^{s}} a(\alpha-M \beta) u(\beta), \quad \alpha \in \mathbb{Z}^{s}
$$

It follows that

$$
u^{*}(\alpha)=\frac{1}{\sigma} \sum_{\beta \in \mathbb{Z}^{s}} u^{*}(\beta) a(M \beta-\alpha), \quad \alpha \in \mathbb{Z}^{s}
$$

For $\alpha \in K_{j}(j \geq 1), a(M \beta-\alpha) \neq 0$ only if $\beta \in M^{-1}\left(\operatorname{supp} a+K_{j}\right) \subseteq K_{j-1}$. Hence

$$
\begin{equation*}
u^{*}(\alpha)=\frac{1}{\sigma} \sum_{\beta \in K_{j-1} \cap \mathbb{Z}^{s}} u^{*}(\beta) a(M \beta-\alpha) \quad \text { for } \alpha \in K_{j} \cap \mathbb{Z}^{s} \tag{5.4}
\end{equation*}
$$

This shows that $\left.u^{*}\right|_{K \cap \mathbb{Z}^{s}}$ belongs to $\operatorname{ker}\left(A^{\prime}-\sigma I_{K}\right)$. Thus, Q maps $\operatorname{ker}\left(S_{a}-\sigma I\right)$ to $\operatorname{ker}\left(A^{\prime}-\sigma I_{K}\right)$. Moreover, if $u^{*}(\alpha)=0$ for $\alpha \in K \cap \mathbb{Z}^{s}$, then it follows from (5.4) that $u^{*}(\alpha)=0$ for $\alpha \in K_{j} \cap \mathbb{Z}^{s}, j=1,2, \ldots$. But $\mathbb{R}^{s}=\bigcup_{j=1}^{\infty} K_{j}$; hence $u^{*}(\alpha)=0$ for all $\alpha \in \mathbb{Z}^{s}$. Thus, the mapping Q is one-to-one. It is also onto. Indeed, if $w \in \operatorname{ker}\left(A^{\prime}-\sigma I_{K}\right)$, then

$$
w(\alpha)=\frac{1}{\sigma} \sum_{\beta \in K \cap \mathbb{Z}^{s}} w(\beta) a(M \beta-\alpha), \quad \alpha \in K \cap \mathbb{Z}^{s} .
$$

For $\alpha \in K \cap \mathbb{Z}^{s}$, let $u^{*}(\alpha):=w(\alpha)$; for $\alpha \in\left(K_{j} \backslash K_{j-1}\right) \cap \mathbb{Z}^{s}(j=1,2, \ldots)$, let $u^{*}(\alpha)$ be determined recursively by (5.4). Then $u \in \operatorname{ker}\left(S_{a}-\sigma I\right)$ and $Q u=w$. Thus, Q is one-to-one and onto, so that (5.2) is valid. The proof of the theorem is complete.

A sequence u on \mathbb{Z}^{s} is called a polynomial sequence if there exists a polynomial p such that $u(\alpha)=p(\alpha)$ for all $\alpha \in \mathbb{Z}^{s}$. The degree of u is the same as the degree of p. For a nonnegative integer k, let P_{k} be the linear space of all polynomial sequences of degree at most k, and let

$$
V_{k}:=\left\{v \in \ell_{0}\left(\mathbb{Z}^{s}\right): \sum_{\alpha \in \mathbb{Z}^{s}} p(\alpha) v(\alpha)=0 \forall p \in \Pi_{k}\right\} .
$$

For $u \in \ell\left(\mathbb{Z}^{s}\right)$ and $v \in \ell_{0}\left(\mathbb{Z}^{s}\right)$, we define

$$
\langle u, v\rangle:=\sum_{\alpha \in \mathbb{Z}^{s}} u(\alpha) v(\alpha) .
$$

Theorem 5.2. Let M be an $s \times s$ dilation matrix and Ω a complete set of representatives of the distinct cosets of $\mathbb{Z}^{s} / M^{T} \mathbb{Z}^{s}$. For any $a \in \ell_{0}\left(\mathbb{Z}^{s}\right)$, the following statements are equivalent:
(a) The sequence a satisfies the sum rules of order $k+1$.
(b) V_{k} is invariant under the transition operator T_{a}.
(c) P_{k} is invariant under the subdivision operator S_{a}.
(d) $D^{\mu} H\left(2 \pi\left(M^{T}\right)^{-1} \omega\right)=0$ for all $|\mu| \leq k$ and all $\omega \in \Omega \backslash\{0\}$.

Proof. (a) \Rightarrow (b): Let $p \in \Pi_{k}$ and $v \in V_{k}$. We have

$$
\sum_{\alpha \in \mathbb{Z}^{s}} p(\alpha) T_{a} v(\alpha)=\sum_{\beta \in \mathbb{Z}^{s}}\left[\sum_{\alpha \in \mathbb{Z}^{s}} p(\alpha) a(M \alpha-\beta)\right] v(\beta) .
$$

Let $q(x):=p\left(M^{-1} x\right), x \in \mathbb{R}^{s}$. Then $p(x)=q(M x), x \in \mathbb{R}^{s}$. By Taylor's formula, we have

$$
q(M \alpha)=q(M \alpha-\beta+\beta)=\sum_{|\mu| \leq k} q_{\mu}(M \alpha-\beta) \beta^{\mu}
$$

where $q_{\mu}:=D^{\mu} q / \mu!\in \Pi_{k}$. Hence

$$
\sum_{\alpha \in \mathbb{Z}^{s}} p(\alpha) a(M \alpha-\beta)=\sum_{\alpha \in \mathbb{Z}^{s}} q(M \alpha) a(M \alpha-\beta)=\sum_{|\mu| \leq k} c_{\mu} \beta^{\mu}
$$

where

$$
c_{\mu}:=\sum_{\alpha \in \mathbb{Z}^{s}} q_{\mu}(M \alpha-\beta) a(M \alpha-\beta)
$$

is independent of β, by condition (a). Thus, we obtain

$$
\sum_{\alpha \in \mathbb{Z}^{s}} p(\alpha) T_{a} v(\alpha)=\sum_{|\mu| \leq k} c_{\mu} \sum_{\beta \in \mathbb{Z}^{s}} \beta^{\mu} v(\beta)=0
$$

because $v \in V_{k}$. This shows that $T_{a} v \in V_{k}$ for $v \in V_{k}$. In other words, V_{k} is invariant under T_{a}.
(b) \Rightarrow (c): Suppose $p \in P_{k}$. We wish to show that $u:=S_{a} p$ lies in P_{k}. We claim that $\langle u, v\rangle=0$ for all $v \in V_{k}$. Indeed,

$$
\begin{aligned}
\langle u, v\rangle & =\sum_{\alpha \in \mathbb{Z}^{s}} u(\alpha) v(\alpha)=\sum_{\alpha \in \mathbb{Z}^{s}} \sum_{\beta \in \mathbb{Z}^{s}} a(\alpha-M \beta) p(\beta) v(\alpha) \\
& =\sum_{\beta \in \mathbb{Z}^{s}} p(-\beta) \sum_{\alpha \in \mathbb{Z}^{s}} a(M \beta-\alpha) v(-\alpha)=\sum_{\beta \in \mathbb{Z}^{s}} p(-\beta) w(\beta),
\end{aligned}
$$

where $w:=T_{a} v^{*}$ with v^{*} given by $v^{*}(\alpha)=v(-\alpha), \alpha \in \mathbb{Z}^{s}$. Since V_{k} is invariant under T_{a} and $v^{*} \in V_{k}$, we have $w \in V_{k}$. It follows that

$$
\langle u, v\rangle=\sum_{\beta \in \mathbb{Z}^{s}} p(-\beta) w(\beta)=0 .
$$

For a multi-index μ with $|\mu|=k+1$, we have $\nabla^{\mu} \delta_{\alpha} \in V_{k}$ for all $\alpha \in \mathbb{Z}^{s}$. Hence $\left\langle u, \nabla^{\mu} \delta_{\alpha}\right\rangle=0$. In other words, $\nabla^{\mu} u(\alpha)=0$ for all $\alpha \in \mathbb{Z}^{s}$ and $|\mu|=k+1$. This shows that u is a polynomial sequence of degree at most k.
(c) $\Rightarrow(\mathrm{a}):$ For $p \in \Pi_{k}$, let $q(\gamma):=\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta+\gamma) p(M \beta+\gamma)$ for $\gamma \in \mathbb{Z}^{s}$. We claim that q is a polynomial sequence. Indeed, by using Taylor's formula, we have

$$
\dot{p(M \beta+\gamma)}=\sum_{|\mu| \leq k} t_{\mu}(M \beta) \gamma^{\mu},
$$

where $t_{\mu}:=D^{\mu} p / \mu$!. Set $q_{\mu}(\beta):=t_{\mu}(-M \beta)$ for $\beta \in \mathbb{Z}^{s}$. Then for $\gamma \in \mathbb{Z}^{s}$,

$$
\begin{aligned}
q(\gamma) & =\sum_{\beta \in \mathbb{Z}^{s}} a(M \beta+\gamma) p(M \beta+\gamma) \\
& =\sum_{\beta \in \mathbb{Z}^{s}} \sum_{|\mu| \leq k} a(\gamma+M \beta) q_{\mu}(-\beta) \gamma^{\mu}=\sum_{|\mu| \leq k}\left(S_{a} q_{\mu}\right)(\gamma) \gamma^{\mu}
\end{aligned}
$$

Note that q_{μ} is a polynomial sequence of degree at most k. By condition (c), $S_{a} q_{\mu}$ is a polynomial sequence; hence so is q. We observe that $q(\gamma+M \eta)=q(\gamma)$ for all $\eta \in \mathbb{Z}^{s}$ and $\gamma \in \mathbb{Z}^{s}$, that is, q is a constant sequence on the lattice $\gamma+M \mathbb{Z}^{s}$ for each $\gamma \in \mathbb{Z}^{s}$. Hence q itself must be a constant sequence. This verifies condition (a).

Finally, the equivalence between (a) and (d) was proved in Lemma 3.3.
We remark that the equivalence between (c) and (d) was proved in [7, p. 98] for the case when the dilation matrix M is 2 times the identity matrix.

6. SMOothNess and approximation order

In this section we discuss the relationship between approximation and smoothness properties of a refinable function.

Suppose ϕ satisfies the refinement equation (1.1) with the dilation matrix M being 2 times the identity matrix. It was proved by Jia in [18] that $\phi \in W_{1}^{k}\left(\mathbb{R}^{s}\right)$ and $\hat{\phi}(0) \neq 0$ imply that $\Pi_{k} \subset \mathbb{S}(\phi)$ and $\mathbb{S}(\phi)$ provides approximation order $k+1$. This result improves an earlier result of Cavaretta, Dahmen, and Micchelli about polynomial reproducibility of smooth refinable functions (see [7, p. 158]).

- The above results can be extended to the case in which the dilation matrix is isotropic. Let M be an $s \times s$ matrix with its entries in \mathbb{C}. We say that M is isotropic if M is similar to a diagonal matrix diag $\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$ with $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{s}\right|$. For example, for $a, b \in \mathbb{R}$, the matrix

$$
\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

is isotropic. Obviously, a matrix M is isotropic if and only if its transpose M^{T} is isotropic.
Lemma 6.1. Let M be an isotropic matrix with spectral radius σ. For any vector norm $\|\cdot\|$ on \mathbb{R}^{s}, there exist two positive constants C_{1} and C_{2} such that the inequalities

$$
C_{1} \sigma^{n}\|v\| \leq\left\|M^{n} v\right\| \leq C_{2} \sigma^{n}\|v\|
$$

hold true for every positive integer n and every vector $v \in \mathbb{R}^{s}$.
Proof. Since M is isotropic, we can find a basis $\left\{v_{1}, \ldots, v_{s}\right\}$ for \mathbb{C}^{s} such that $M v_{j}=$ $\lambda_{j} v_{j}$ with $\left|\lambda_{1}\right|=\cdots=\left|\lambda_{s}\right|=\sigma$. Recall that two norms on a finite-dimensional linear space are equivalent. Hence there exist two positive constants C_{1} and C_{2} such that

$$
C_{1} \sum_{j=1}^{s}\left|a_{j}\right| \leq\|v\| \leq C_{2} \sum_{j=1}^{s}\left|a_{j}\right| \quad \text { for } v=\sum_{j=1}^{s} a_{j} v_{j}
$$

But for $v=\sum_{j=1}^{s} a_{j} v_{j}$ we have $M^{n} v=\sum_{j=1}^{s} a_{j} \lambda_{j}^{n} v_{j}$. It follows that

$$
\left\|M^{n} v\right\| \leq C_{2} \sum_{j=1}^{s}\left|a_{j} \lambda_{j}^{n}\right|=C_{2} \sigma^{n} \sum_{j=1}^{s}\left|a_{j}\right| \leq C_{2} C_{1}^{-1} \sigma^{n}\|v\|
$$

and

$$
\left\|M^{n} v\right\| \geq C_{1} \sum_{j=1}^{s}\left|a_{j} \lambda_{j}^{n}\right|=C_{1} \sigma^{n} \sum_{j=1}^{s}\left|a_{j}\right| \geq C_{1} C_{2}^{-1} \sigma^{n}\|v\|
$$

This completes the proof of the lemma.
Lemma 6.2. Let M be an isotropic matrix with spectral radius σ. For an infinitely differentiable function f on \mathbb{R}^{s}, let

$$
f_{n}(\xi):=f\left(\left(M^{T}\right)^{n} \xi\right), \quad \xi \in \mathbb{R}^{s}, \quad n=0,1,2, \ldots
$$

Then, for each positive integer r, there exists a positive constant C depending only on r and the matrix M such that

$$
\begin{equation*}
\max _{|\mu|=r}\left|D^{\mu} f_{n}(\xi)\right| \leq C \sigma^{r n} \max _{|\nu|=r}\left|D^{\nu} f\left(\left(M^{T}\right)^{n} \xi\right)\right| \quad \forall \xi \in \mathbb{R}^{s} . \tag{6.1}
\end{equation*}
$$

Proof. Let $B=\left(b_{p q}\right)_{1 \leq p, q \leq s}$ be the matrix $\left(M^{T}\right)^{n}$. By the chain rule, for $j=$ $1, \ldots, s$, we have

$$
D_{j} f_{n}(\xi)=\left(b_{1 j} D_{1}+\cdots+b_{s j} D_{s}\right) f\left(\left(M^{T}\right)^{n} \xi\right), \quad \xi \in \mathbb{R}^{s}
$$

Hence, for a multi-index $\mu=\left(\mu_{1}, \ldots, \mu_{s}\right)$ with $|\mu|=r$,

$$
D^{\mu} f_{n}(\xi)=\prod_{j=1}^{s} D_{j}^{\mu_{j}} f_{n}(\xi)=\prod_{j=1}^{s}\left(b_{1 j} D_{1}+\cdots+b_{s j} D_{s}\right)^{\mu_{j}} f\left(\left(M^{T}\right)^{n} \xi\right), \quad \xi \in \mathbb{R}^{s}
$$

By Lemma 6.1, there exists a constant $C_{1}>0$ depending only on the matrix M such that $\left|b_{p q}\right| \leq C_{1} \sigma^{n}$ for all p, q. We may express $\prod_{j=1}^{s}\left(b_{1 j} D_{1}+\cdots+b_{s j} D_{s}\right)^{\mu_{j}}$ as $\sum_{|\nu|=r} c_{\nu} D^{\nu}$, where each c_{ν} is a linear combination of products of r factors of the $b_{p q}$'s. Hence there exists a positive constant C depending only on r and the matrix M such that $\left|c_{\nu}\right| \leq C \sigma^{r n}$ for all $|\nu|=r$. This proves (6.1).

Now we are in a position to establish the main result of this section.
Theorem 6.3. Suppose M is an $s \times s$ isotropic dilation matrix, and a is an element in $\ell_{0}\left(\mathbb{Z}^{s}\right)$ satisfying (1.2). Let ϕ be the normalized solution of the refinement equation (1.1). If $\phi \in W_{1}^{k}\left(\mathbb{R}^{s}\right)$, then $\Pi_{k} \subset \mathbb{S}(\phi)$ and $\mathbb{S}(\phi)$ provides approximation order $k+1$.
Proof. Since $\hat{\phi}(0)=1$, in order to prove $\mathbb{S}(\phi) \supset \Pi_{k}$, it suffices to show that for $|\mu| \leq k$,

$$
\begin{equation*}
D^{\mu} \hat{\phi}(2 \pi \beta)=0 \quad \forall \beta \in \mathbb{Z}^{s} \backslash\{0\} \tag{6.2}
\end{equation*}
$$

The proof proceeds with induction on $|\mu|$, the length of μ.
Let H be the function given in (3.2). A repeated application of (3.1) yields that, for $n=1,2, \ldots$,

$$
\hat{\phi}(\xi)=\left[\prod_{j=1}^{n} H\left(\left(M^{T}\right)^{-j} \xi\right)\right] \hat{\phi}\left(\left(M^{T}\right)^{-n} \xi\right), \quad \xi \in \mathbb{R}^{s}
$$

It follows that

$$
\begin{equation*}
\hat{\phi}\left(\left(M^{T}\right)^{n} \xi\right)=h_{n}(\xi) \hat{\phi}(\xi), \quad \xi \in \mathbb{R}^{s} \tag{6.3}
\end{equation*}
$$

where $h_{n}(\xi):=\prod_{j=1}^{n} H\left(\left(M^{T}\right)^{j-1} \xi\right)$. Note that H is 2π-periodic and $H(0)=1$. Thus, we have

$$
\hat{\phi}\left(2 \pi\left(M^{T}\right)^{n} \beta\right)=\left[\prod_{j=1}^{n} H\left(2 \pi\left(M^{T}\right)^{j-1} \beta\right)\right] \hat{\phi}(2 \beta \pi)=\hat{\phi}(2 \beta \pi), \quad \beta \in \mathbb{Z}^{s}
$$

If $\phi \in L_{1}\left(\mathbb{R}^{s}\right)$, then by the Riemann-Lebesgue lemma we obtain

$$
\hat{\phi}(2 \beta \pi)=\lim _{n \rightarrow \infty} \hat{\phi}\left(2 \pi\left(M^{T}\right)^{n} \beta\right)=0 \quad \forall \beta \in \mathbb{Z}^{s} \backslash\{0\}
$$

This establishes (6.2) for $\mu=0$.
Let $0<r \leq k$. Assume that (6.2) has been proved for $|\mu|<r$. We wish to establish (6.2) for $|\mu|=r$. For this purpose, we deduce from (6.3) that

$$
\hat{\phi}(\xi)=f_{n}(\xi)\left[1 / h_{n}(\xi)\right], \quad \xi \in \mathbb{R}^{s}
$$

where $f_{n}(\xi):=\hat{\phi}\left(\left(M^{T}\right)^{n} \xi\right), \xi \in \mathbb{R}^{s}$. By using the Leibniz formula for differentiation, we get

$$
\begin{equation*}
D^{\mu} \hat{\phi}(\xi)=\sum_{\nu \leq \mu}\binom{\mu}{\nu} D^{\nu} f_{n}(\xi) D^{\mu-\nu}\left[1 / h_{n}\right](\xi), \quad \xi \in \mathbb{R}^{s} \tag{6.4}
\end{equation*}
$$

But, for $\beta \in \mathbb{Z}^{s} \backslash\{0\}$ and $|\nu|<r$, we have $D^{\nu} f_{n}(2 \pi \beta)=0$, by the induction hypothesis. When $\nu=\mu$, we have $\left[1 / h_{n}\right](2 \pi \beta)=1$. Hence it follows from (6.4) that

$$
\begin{equation*}
D^{\mu} \hat{\phi}(2 \pi \beta)=D^{\mu} f_{n}(2 \pi \beta), \quad \beta \in \mathbb{Z}^{s} \backslash\{0\} \tag{6.5}
\end{equation*}
$$

By Lemma 6.2, we have

$$
\begin{equation*}
\left|D^{\mu} f_{n}(2 \pi \beta)\right| \leq C \sigma^{r n} \max _{|\nu|=r}\left|D^{\nu} \hat{\phi}\left(\left(M^{T}\right)^{n} 2 \pi \beta\right)\right|, \quad \beta \in \mathbb{Z}^{s} \backslash\{0\} \tag{6.6}
\end{equation*}
$$

where $C>0$ is a constant independent of n.
In what follows, we use v_{j} to denote the j th coordinate of a vector v in \mathbb{R}^{s}. For a multi-index $\nu=\left(\nu_{1}, \ldots, \nu_{s}\right)$, let ϕ_{ν} be the function given by $\phi_{\nu}(x)=(-i x)^{\nu} \phi(x)$, $x \in \mathbb{R}^{s}$. Then $D^{\nu} \hat{\phi}=\hat{\phi}_{\nu}$ and

$$
\left(\left(-i D_{j}\right)^{r} \phi_{\nu}\right)^{\wedge}(\xi)=\xi_{j}^{r} D^{\nu} \hat{\phi}(\xi), \quad \xi=\left(\xi_{1}, \ldots, \xi_{s}\right) \in \mathbb{R}^{s}
$$

Since $\phi \in W_{1}^{k}\left(\mathbb{R}^{s}\right)$, we have $\left(-i D_{j}\right)^{r} \phi_{\nu} \in L_{1}\left(\mathbb{R}^{s}\right)$. Thus, by the Riemann-Lebesgue lemma, we obtain

$$
\lim _{n \rightarrow \infty}\left(\left(M^{T}\right)^{n} \beta\right)_{j}^{r} D^{\nu} \hat{\phi}\left(2 \pi\left(M^{T}\right)^{n} \beta\right)=0 \quad \text { for } \beta \in \mathbb{Z}^{s} \backslash\{0\}
$$

This is true for $j=1, \ldots, s$; hence it follows that

$$
\lim _{n \rightarrow \infty}\left\|\left(M^{T}\right)^{n} \beta\right\|^{r} D^{\nu} \hat{\phi}\left(2 \pi\left(M^{T}\right)^{n} \beta\right)=0 \quad \text { for } \beta \in \mathbb{Z}^{s} \backslash\{0\}
$$

where $\|\cdot\|$ is a vector norm on \mathbb{R}^{s}. By Lemma 6.1 , there exists a positive constant $C_{1}>0$ independent of n such that

$$
C_{1} \sigma^{n}\|\beta\| \leq\left\|\left(M^{T}\right)^{n} \beta\right\| .
$$

Therefore

$$
\lim _{n \rightarrow \infty} \sigma^{n r} D^{\nu} \hat{\phi}\left(2 \pi\left(M^{T}\right)^{n} \beta\right)=0 \quad \text { for } \beta \in \mathbb{Z}^{s} \backslash\{0\}
$$

This in connection with (6.5) and (6.6) tells us that $D^{\mu} \hat{\phi}(2 \pi \beta)=0$ for $|\mu|=r$ and $\beta \in \mathbb{Z}^{s} \backslash\{0\}$. The proof of the theorem is complete.

Recall that Ω is a complete set of representatives of the distinct cosets of $\mathbb{Z}^{s} / M^{T} \mathbb{Z}^{s}$. Thus, as a consequence of Theorem 6.3, we conclude that if the normalized solution ϕ of the refinement equation (1.1) lies in $W_{1}^{k}\left(\mathbb{R}^{s}\right)$, and if $N(\phi) \cap$ $\left(2 \pi\left(M^{T}\right)^{-1} \Omega\right)=\emptyset$, then the refinement mask a satisfies all the conditions in Theorem 5.2.

References

[1] J. Barros-Neto, An Introduction to the Theory of Distributions, Marcel Dekker, New York, 1973. MR 57:1113
[2] C. de Boor, The polynomials in the linear span of integer translates of a compactly supported function, Constr. Approx. 3 (1987), 199-208. MR 88e:41054
[3] C. de Boor, R. DeVore, and A. Ron, Approximation from shift-invariant subspaces of $L_{2}\left(\mathbb{R}^{d}\right)$, Trans. Amer. Math. Soc. 341 (1994), 787-806. MR 94d:41028
[4] C. de Boor and K. Höllig, Approximation order from bivariate C^{1}-cubics: a counterexample, Proc. Amer. Math. Soc. 87 (1983), 649-655. MR 84j:41014
[5] C. de Boor, K. Höllig, and S. Riemenschneider, Box Splines, Springer-Verlag, New York, 1993. MR 94k:65004
[6] C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth bivariate pp functions, J. Approx. Theory 72 (1993), 24-33. MR 94e:41012
[7] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary Subdivision, Memoirs of Amer. Math. Soc., vol. 93, no. 453, 1991. MR 92h:65017
[8] I. Daubechies and J. C. Lagarias, Two-scale difference equations: II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), 1031-1079. MR 93g:39001
$[!\rightarrow$ R. DeVore, B. Jawerth, and V. Popov, Compression of wavelet decompositions, Amer. J. Math. 114 (1992), 737-785. MR 94a:42045
[10] T. N. T. Goodman, C. A. Micchelli, and J. D. Ward, Spectral radius formulas for subdivision operators, Recent Advances in Wavelet Analysis (L. L. Schumaker and G. Webb, eds.), Academic Press, 1994, pp. 335-360. MR 94m:47076
[11] K. Gröchenig and W. R. Madych, Multiresolution analysis, Haar bases, and self-similar tilings of \mathbb{R}^{n}, IEEE Transactions on Information Theory $\mathbf{3 8}$ (1992), 556-568. MR 93i:42001
[12] B. Han and R. Q. Jia, Multivariate refinement equations and subdivision schemes, manuscript.
[13] C. Heil, G. Strang, and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996), 75-94. MR 97c:65033
[14] R. Q. Jia, A dual basis for the integer translates of an exponential box spline, Rocky Mountain J. Math. 23 (1993), 223-242. MR 94a:41022
[15] R. Q. Jia, A Bernstein type inequality associated with wavelet decomposition, Constr. Approx. 9 (1993), 299-318. MR 94h:41026
[16] R. Q. Jia, The Toeplitz theorem and its applications to Approximation Theory and linear PDE's, Trans. Amer. Math. Soc. 347 (1995), 2585-2594. MR 95i:41014
[17] R. Q. Jia, Refinable shift-invariant spaces: from splines to wavelets, Approximation Theory VIII (C. K. Chui and L. L. Schumaker, eds.), vol. 2, World Scientific Publishing Co., Inc., 1995, pp. 179-208.
[18] R. Q. Jia, The subdivision and transition operators associated with a refinement equation, Advanced Topics in Multivariate Approximation (F. Fontanella, K. Jetter and P.-J. Laurent, eds.), World Scientific Publishing Co., Inc., 1996, pp. 139-154.
[19] R. Q. Jia and C. A. Micchelli, On linear independence of integer translates for a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1993), 69-85. MR 94e:41044
[20] R. Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of prewavelets V : extensibility of trigonometric polynomials, Computing 48 (1992), 61-72. MR 94a:42049
[21] A. Ron, A characterization of the approximation order of multivariate spline spaces, Studia Math. 98 (1991), 73-90. MR 92g:41017

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

E-mail address: jia@xihu.math.ualberta.ca

[^0]: Received by the editor April 17, 1996.
 1991 Mathematics Subject Classification. Primary 41A25, 41A63; Secondary 42C15, 65D15.
 Key words and phrases. Refinement equations, refinable functions, wavelets, accuracy, approximation order, smoothness, subdivision operators, transition operators.

 Supported in part by NSERC Canada under Grant OGP 121336.

