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APPROXIMATION PROPERTIES OF 
MULTIVARIATE WAVELETS 

RONG-QING JIA 

ABSTRACT. Wavelets are generated from refinable functions by using multires- 
olution analysis. In this paper we investigate the approximation properties of 
multivariate refinable functions. We give a characterization for the approxi- 
mation order provided by a refinable function in terms of the order of the sum 
rules satisfied by the refinement mask. We connect the approximation prop- 
erties of a refinable function with the spectral properties of the corresponding 
subdivision and transition operators. Finally, we demonstrate that a refinable 
function in W -1 (RS) provides approximation order k. 

1. INTRODUCTION 

We are concerned with functional equations of the form 

(1.1) ?>= E a(a)>(M -), 

where X is the unknown function defined on the s-dimensional Euclidean space RlS, 
a is a finitely supported sequence on ZS, and M is an s x s integer matrix such that 
lim,,, M` = 0. The equation (1.1) is called a refinement equation, and the 
matrix M is called a dilation matrix. Correspondingly, the sequence a is called 
the refinement mask. Any function satisfying a refinement equation is called a 
refinable function. 

If a satisfies 

(1.2) E a(a) = m := I det MI, 

then it is known that there exists a unique compactly supported distribution X 

satisfying the refinement equation (1.1) subject to the condition b(0) = 1. This 
distribution is said to be the normalized solution to the refinement equation with 
mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in 
[7, Chap. 5] for the case in which the dilation matrix is 2 times the s x s identity 
matrix I. The same proof applies to the general refinement equation (1.1). 

Wavelets are generated from refinable functions. In [20], Jia and Micchelli dis- 
cussed how to construct multivariate wavelets from refinable functions associated 
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with a general dilation matrix. The approximation and smoothness properties of 
wavelets are determined by the corresponding refinable functions. 

In [9], DeVore, Jawerth, and Popov established a basic theory for nonlinear 
approximation by wavelets. In their work, the refinement mask was required to 
be nonnegative. In [15], Jia extended their results and, in particular, removed the 
restriction of non-negativity of the mask. 

Our goal is to characterize the approximation order provided by a refinable 
function in terms of the refinement mask. This information is important for our 
understanding of wavelet approximation. 

Before proceeding further, we introduce some notation. A multi-index is an s- 
tuple ,u = (i'i,... , ps) with its components being nonnegative integers. The length 
of ,u is ll := piU + *-- + ps, and the factorial of ,u is p,! := pi.! ..s!. For two 
multi-indices ,t = (i..... ., s) and v = (vl, . . . , vs), we write v < ,u if vj < ,j for 

j = 1,... , s. If v<,p, then we define 

Vv v!(,uv) 

For j 1, ... , s, Dj denotes the partial derivative with respect to the jth coordi- 
nate. For u = (Al.... , ps), DP is the differential operator DP1 DP,. Moreover, 
p, denotes the monomial given by 

pp (x):-l XA AS x = (Xi,... , xs) E Rs. 

The total degree of p. is ku . For a nonnegative integer k, we denote by Hk the linear 
span of {p, : lu < k}. Then H: Uk=-0 Hk is the linear space of all polynomials of 
s variables. We agree that L- I {0}. 

The Fourier transform of an integrable function f on Rs is defined by 

f = f f (x)e`-z dx, Rs 

where x ( denotes the inner product of two vectors x and ( in IRs. The domain of 
the Fourier transform can be naturally extended to include compactly supported 
distributions. 

We denote by (ZS) the linear space of all sequences on ZS, and by fo(Zs) the 
linear space of all finitely supported sequences on Zs. For a C Zs, we denote by 
6c, the element in fo(Zs) given by 6, (a) = 1 and 6, (3) = 0 for all 3 cE Zs \ {al}. 
In particular, we write 6 for 60. For j = 1, . . . , s, let ej be the jth coordinate unit 
vector. The difference operator Vi on (ZS) is defined by Vja := a - a(. -ej), 
a cE (7Zs). For a multi-index ,t (,u1... , ps), VI' is the difference operator 

For a compactly supported distribution X on IRts and a sequence b E (Zs), the 
semi-convolution of X with b is defined by 

*'bS:= E q(. - a)b(a). 

Let S(z) denote the linear space {q*'b: b E f(Zs)}. We call S(s) the shift- 
invariant space generated by b. More generally, if ( is a finite collection of 
compactly supported distributions on IRs, then we use S((P) to denote the linear 
space of all distributions of the form 0 f*'bo, where bo E (ZS) for X C (. 

Here is a brief ou-tline of the paper. In Section 2 we clarify the relationship 
between the order of approximation provided by S(q) and the accuracy of q, the 
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order of the polynomial space contained in S(X). In Section 3 we introduce the so- 
called sum rules and give a characterization for the accuracy of a refinable function 
in terms of the order of the sum rules satisfied by the refinement mask. In Section 4, 
several examples are provided to illustrate the general theory. Section 5 is devoted 
to a study of the subdivision and transition operators and their applications to 
approximation properties of refinable functions. Finally, in Section 6, we show that 
a refinable function in 1(IRS) associated with an isotropic dilation matrix has 
accuracy at least k + 1. 

2. APPROXIMATION ORDER AND POLYNOMIAL REPRODUCIBILITY 

Let X be a compactly supported function in Lp(Rs) (1 < p < ox). In this section 
we clarify the relationship between the order of approximation provided by S(X) 
and the degree of the polynomial space contained in S(X). The reader is referred 
to [17] for a recent survey on approximation by shift-invariant spaces. 

The norm in Lp(Rs) is denoted by 11 IIP. For an element f E Lp(Rs) and a subset 
G of Lp(Rs), the distance from f to G, denoted by distp(f, G), is defined by 

distp(f, G) := inf Ilf -gllp. 
gEG 

Let S S (f) nLp (Rs). For h > 0, let Sh := {g (./h): g C S}. For a real number 
n > 0, we say that S(X) provides approximation order r if for each sufficiently 

smooth function f in Lp(Rs), there exists a constant C > 0 such that 

distp(f,Sh) < Chn Vh > 0. 

We say that S(X) provides density order n (see [3]) if for each sufficiently smooth 

function f in Lp(Rs), 

limO dist p(f,I Sh )/h = O. 

Let k be a positive integer. Suppose S(X) D H1k-1 Does S(X) always provide 

approximation order k? The answer is a surprising no. The first counterexample 

was given by de Boor and H6llig in [4] by considering bivariate C1-cubics. Their 

results can be described in terms of box splines. 

For a comprehensive study of box splines, the reader is referred to the book [5] 

by de Boor, H6llig, and Riemenschneider. For our purpose, it suffices to consider 

the box splines Mr,s,t given by 

Mr,st(() = jt1)yii~2) i ~l l e2) = ( Ei,2) 
R 
2 

where r, s, and t are nonnegative integers. It is easily seen that Mr,s,t E Loo(1R2) if 
and only if min{r + s, s + t, t + r} > 1. Let b1 := M2,1,2 and 02 := M1,2,2- In [4], 

de Boor and Hollig proved that S(X1, ib2) D 13 but S(X1, 02) does not provide L,- 
approximation order 4. In fact, the optimal LOO-approximation order provided by 

S(X1, 02) is 3. In [21], Ron showed that there exists a compactly supported function 
,b in S(X1,X02) such that 13 C S(f). Since S(fO) C S(X1,X02), the approximation 

order provided by S(fO) is at most 3. i 
In [6], de Boor and Jia extended the results in [4] in the following way. For 

p = 1, 2,. . ., let k be an integer such that 2p + 2 < k < 3p + 1. Let 

(P:= {Mr,s,t E CP(IR2) :r+s+t < k+2}. 
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Then S(4D) D Uk, but the optimal Lp-approximation order (1 < p < oc) provided 
by S(b) is k, not k + 1. 

However, if SQ() provides approximation order k, then SQ() contains Uk-I. This 
was proved by Jia in [16]. Under the additional condition that q$(0) =4 0, it was 
proved by Ron [21] that S(X) provides LOO-approximation order k if and only if S(X) 
contains Hk-I- In general, we have the following results, which were established in 
[16]. 

Theorem 2.1. Let 1 < p < oc, and let b be a compactly supported function in 
Lp(Rs) with q(0) =4 0. For every positive integer k, the following statements are 
equivalent: 
(a) S(f) provides approximation order k. 
(b) S(Q) provides density order k - 1. 
(c) S(Q) contains U k-l- 

(d) D/Lq(27rw) = 0 for all t with lul < k - 1 and all 03 C ZEs \ {0}. 

We remark that the implications (a) #> (b) #> (c) #> (d) are valid without the 

assumption q(0) =4 0. Indeed, (a) #> (b) is obvious, (b) => (c) was proved in [16], 

and the implication (c) => (d) was established in [2]. 

Suppose q is the normalized solution of the refinement equation (1.1). If q lies 

in Lp(Rs) for some p, 1 < p < oo, then Theorem 2.1 applies to q, because q(0) = 1. 

Thus, there are two questions of interest. The first question is how to determine 

whether b lies in Lp (IRs), and the second problem is how to characterize the highest 

degree of polynomials contained in S(X). The first question was discussed by Han 

and Jia in [12]. In this paper, we concentrate on the second question. When we 

speak of polynomial containment, q is not required to be an integrable function. 

Thus, we say that a compactly supported distribution q on IRts has accuracy k, if 

q$() D Uk-1 (see [13] for the terminology of accuracy). 
We point out that the equivalence between (c) and (d) in Theorem 2.1 remains 

true for every compactly supported distribution X on is. 

If X is a compactly supported continuous function on IRs, and if X satisfies con- 

dition (d), then it was proved in [14] that 

(2.1) q$p= (-iD)p Vp E CIk-l, 

where i is the imaginary unit and 0(-iD) denotes the differential operator given 

by the formal power series 

z Dbtq(?) (-iD)"l. 
t>o 

For a given polynomial p, D"lp = 0 if lul is sufficiently large. Thus, b(-iD) is 

well defined on II. We indicate that (2.1) is also valid for a compactly supported 

distribution X on Rs satisfying condition (d). To see this, choose a function p E 
CjI(Rs) such that p(O) 1 and Dvp(O) = 0 for all v with 0 < vl < k - 1. Let 

Pn := P(./n)/ns for n 1,2.... Then for each n, On := ?*Pn, the convolution of 
b with pn, is a function in C?'(Rs). Moreover, the sequence (?bn)n=1,2.... converges 

to X in the sense that 

lim (q$n,f) = (q$f) Vf E CcI (Rs) 
n-+oo 
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See [1, p. 97] for these facts. Thus, we have ?bn(() = k'(M)P for ( E RS. Since 
X satisfies condition (d), by using the Leibniz formula for differentiation, we get 
DyO?>n(27ro) = 0 for I,i < k - 1 and s E 7s \ {0}. Hence (2. 1) is applicable to n 
and 

O>nFP= q$P(-iD) p VP E Uk-i- 

Letting n -- oo in the above equation, we obtain */'p = (-iD) p for all p E Ilk-I. 

Consequently, the linear mapping O*' given by p v-* 0b*'p maps Uk-I to Ilkl. If, 
in addition, b(0) =4 0, then this mapping is one-to-one, and hence it is onto. This 
shows that (d) #> (c) is valid for every compactly supported distribution q on Rs 
with O(0) #4 0. 

Next, we show that (c) #> (d) for every compactly supported distribution X on 
Rs. If X is a compactly supported continuous function on IRs, this was proved 
in [2] and [14]. Let X be a compactly supported distribution on IRs. For a fixed 
element v3 E Zs \ {0}, choose a function p C C??(Rs) such that p(O) =4 0 and 
p(27R-) 0 0. Then the convolution O*p is a function in Cc(Rs) and its Fourier 
transform is &p. Note that the mapping p* given by q v-- p*q maps rk-1 to rk-l- 
Since p(O) =4 0, this mapping is one-to-one; hence it is onto. Thus, for p E Ik-l, 
we can find q E Uk-l such that p = p*q. Since S(X) D Uk-1, there exists some 
b E ti(ZS) such that q = O*'b. It follows that p = p* (*'b) = (p*O)*'b. This shows 
that S(Q*p) D Uk-l. By what has been proved, DA(Q)(27w/) = 0 for all t with 
l,l < k - 1. Since p(27wi) + 0, we can write X (p)(l/p) in a neighborhood of 
27wo. By applying the Leibniz formula for differentiation to this equation, we obtain 
D/10(27w/) = 0 for 11 < k - 1. This shows that (c) #> (d) for every compactly 
supported distribution X on IRS. 

To summarize, a compactly supported distribution X on IRs with O(O) =4 0 pos- 
sesses accuracy k if and only if DAb(27rw) = 0 for all ,u with pl < k - 1 and all 

dEs \{0}. 

3. CHARACTERIZATION OF ACCURACY 

The purpose of this section is to give a characterization for the accuracy of a 
refinable function in terms of the refinement mask. 

For an s x s dilation matrix M, let F be a complete set of representatives of 
the distinct cosets of sZ/MZs, and let Q be a complete set of representatives of 
the distinct cosets of sZ/MTZs, where MT denotes the transpose of M. Evidently, 
#F = #Q = I det Ml. Without loss of any generality, we may assume that 0 E F 
and 0 E Q. 

Suppose a is a finitely supported sequence on ZS satisfying (1.2). Let X be the 
normalized solution of the refinement equation (1.1). Taking Fourier transform of 
both sides of (1.1), we obtain 

(3.1) (Q) H((MT)-I6) q((MT)-I), E R s 

where 

s~~~~~~~~~~~~ (3.2) H 2R f an / H = 1. 

Note that H is a 2wr-periodic function and H(0) =1. 
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For a compactly supported distribution 0 on IR', define 

N(q) := R's: Q(j + 27r/3) = 0 V/3 C E'S}. 

If 4 is a compactly supported function in Lp(IRs) (1 < p < oo), then the shifts of q 
are stable if and only if N(q) is the empty set (see [19]). 

Theorem 3.1. Let a be a finitely supported sequence on ZS satisfying (1.2), and 
let H be the function given in (3.2). If 

(3.3) D"[H(2wr(MT)-W) = 0 Vw E Q \ {0} and lul < k - 1, 

then the normalized solution b of the refinement equation (1.1) has accuracy k. 
Conversely, if 0 has accuracy k, and if N(o) n (27r(MT)-IQ) 0, then (3.3) holds 
true. 

Proof. Suppose that (3.3) is satisfied. Since H is 27r-periodic, (3.3) implies 

(3.4) D[H(2wr(MT<13) =0 Z3 E E \ (MT7s) and lt < k - 1. 

Let f and g be the functions given by 

f (0) =H((MT) ') and g(Q) := ?((MT)-4), C Rs. 

For l,l < k - 1 and v3 C ZEs \ {0}, applying the Leibniz formula for differentiation 
to (3.1), we obtain 

(3.5) D/`q(273) = E ('J)Df(27r/3) Dv-"g(27rO). 

By using the chain rule, we see that D2f(27rv3) is a linear combination of terms of 
the form D'H(27r(MT) -1I), where a < v. In light of (3.4), these terms are equal 
to 0 if v3 C Es \ (MT7S). This shows that DAq(27ro3) = 0 for 13 s \ (MT7S). 

We shall prove that, for r = 0,1,..., Dyq(27rT3) = 0 for 13 E ((MT)rZs) \ 
((MT)r+lZs). This will be done by induction on r. The case r 0 was established 
above. Suppose r > 1 and our claim has been verified for r-1. Let 13 E ((MT)rZs)\ 
((MT)r+lZs). Then we have (MT)-113 E ((MT)r-lZs) \ ((MT)rZs). Hence, by 
the induction hypothesis, Dyq(27r(MT)-113) = 0 for ,uj < k - 1. Consequently, 
D'yg(27r/3) = 0 for all ,u with lul < k - 1. This in connection with (3.5) tells us that 

DAO(27r/3) 0 for lil < k - 1, thereby completing the induction procedure. The 
sufficiency part of the theorem has been established. 

Conversely, suppose X has accuracy k and N($) n (27r(MT)-lQ) 0. Then 

Dl`q(2-r/3) = O V/3 E Zs \ {0} and It,l < k-1. 

Let w E Q \ {0}. Since N(Q) n (27r(MT)-lQ) = 0, there exists some Z 7Zs such 
that q(-y) #0 O for -y := 2ir3 + 27r(MT)lw. Thus, the following identity is valid for 
( in a neighborhood of y: 

H(Q) = q$(MT() [1/(f()] 

Let h be the function given by ( v-IMT(), ( E Rs. By using the Leibniz formula 
for differentiation, we obtain 

D'1H(7) = , Dh(7)D/"[1/ ](). 
v11 
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By the chain rule, D'h(1) is a linear combination of terms of the form Dcq$(MT), 
where a < v. Note that 

MTi MT (27r/3 1+ 27r(MTw)-I) 27r(MT) 13 + 2irw C 2qrZs \ {O}. 

Hence Dc(MT1) = 0 for lal < k - 1, because X has accuracy k. Therefore we 
obtain DPAH(27rf3 + 27r(MT)-lw) = 0 for lpl < k - 1. But H is 27r-periodic. This 
shows that D'AH(27r(MT)-w) = 0 for all w E Q \ {0} and ,l < k - 1, as desired. 
The proof of the theorem is complete. D 

In the rest of this section we shall show that (3.3) is equivalent to saying that, 
for all p E Ik-1, 

(3.6) E a(M13) p(M13) = a(M13 + y) p(M13 + y) V7 E F. 
/3EES 8EErs 

For this purpose, we first establish the following lemma. 

Lemma 3.2. The matrix 

(3 7) 1 (ei27M- 

is a unitary one. 

Proof. Let ay E F\{0}. We claim that there exists some W' E Q such that M-1yw' ? 

Z. Any element 13 CE 7s can be represented as MTa+w for some a CE 7s and w E Q. 
Note that (M-liy).(MTa) = -yla E Z for all a CE Zs. Hence M-17W' E Z for all 
W' E Q implies that M-17.-3 C Z for all 13 E ZS. In other words, M-1y E ZS, and 
hence ay E MZs, which contradicts the assumption ay E F \ {0}. This verifies our 
claim. 

For a fixed element ay in F \ {0}, let 

: ei27IM-'.w 

weQ 

Choose w' c Q such that M-1yW' ? Z. We have 

ei2er-l? w = E i27r(M-'-Y) (W+W') = i27rM-'-y w = ei2 1Y.W' a S- - - 5 

wEQ wEQ 

Since ei2,7I M / W 1, it follows that a = 0. This shows that 

(3.8) E 0i2 M-1 y C F \ {0}. 
weQ 

Similarly, we can prove that 

(39) 5E ei27rM 7U _ 0 VW Q \ {0}. 

Finally, the matrix in (3.7) is unitary if and only if for every pair of elements 

1 Z 

ei27rM-1QyI) 
- { if a = 

For this omes frm the fact #Q m;for if 7 7y't 

For ay = y', this comes from the fact #Q = m; for ay :4 y', this follows from (3.8). D 
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Lemma 3.3. Let a be a finitely supported sequence satisfying (1.2), and let H be 
the function given in (3.2). Then the following two conditions are equivalent for 
every polynomial p: 
(a) p(iD) H(2wF(AIT)-lw) = 0 for all w E Q \ {O}. 

(b) E,3,z, a(M/) p(M/) = E,3Eiz, a(M/ + -y) p(M/ + ty) for all -y E F. 

Proof. By (3.2) we have 

mp(iD)H(Q,) = E a(a)p(a)e-', E iRs. 

An element a E 72 can be written uniquely as M/3 + -y with 3 E Zs and -y E F. 
Observe that, for := 2wr(MT)-lw, 

-ia? 6= -i(M/3 + -y).27r(MT)-lw = -i 2irf3w - i 27r-y.(MT)-lw. 

Hence we have 

(3.10) mp(iD)H(2wr(MT) - 1w) = Ei27y(M) 

-YEF 

where 

b(Qy) a(M/3 + y) p(M3 + 'y) 
137s 

Condition (b) says that b(Qy) = b(O) for all -y E F. Hence by (3.9) we deduce from 
(3.10) that 

mP(iD)H(2wr(MT<1) = b(O) E ei2 (MT<1w 0 
-YEF 

for all w E Q \ {0}. This shows that (b) =X (a). 
Conversely, (3.10) tells us that condition (a) implies 

S b( ) -i2M 7M1-ya = 0 VW Q \ {0}. 
-YEF 

Let r1 be an element of F. Then it follows that 

E ei27M-1n E b() e-i27M-1 YW - b-y). 
weQ erF Y r 

On the other hand, 

Z ei27M1rw S b(-x)e-i27M-1Yw = E b(y) 5 ei27M- 1(-q) = m 
weQ erF YEF weQ 

since weQ ei27Ml(--y) w = 0 for ay 7 q, by Lemma 3.2. This shows mb(q) = 

rb(Qy). Therefore b(iq) = b(O) for all 1 E F. In other words, (a) implies 
(b). 

If an element a E fo(Z2) satisfies (3.6) for all p E Ilk-1, then we say that a 
satisfies the sum rules of order k. The results of this section can be summarized 
as follows: If the refinement mask a satisfies the sum rules of order k, then the 
normalized solution X of the refinement equation with mask a has accuracy k. 
Conversely, if X has accuracy k, and if N(q) n (27r(MT)-1Q) = 0, then a satisfies 
the sum rules of order k. 
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4. EXAMPLES 

In this section we give several examples to illustrate the general theory. 
The symbol of a sequence a E Lo(ZS) is the Laurent polynomial a(z) given by 

a(z) := X a(a)za, z E (C \ {O})s, 
ce7Zs 

where zc' := zl zC , for z = (z, . . . , z) E Cs and a = (a,..., as) E s. If a 
is supported on [0, N]S for some positive integer N, then a(z) is a polynomial of z. 

In the univariate case (s = 1), if a satisfies the sum rules of order k, then a(z) 
is divisible by (1 + Z)k (see, e.g., [8]). In the multivariate case (s > 1), this is no 
longer true. 

Example 4.1. Let s = 2 and M = 2I, where I is the 2 x 2 identity matrix. Let a 
be the sequence on 22 given by its symbol 

a(z) := Z 2+ Z2 + Z1Z2 + ZlZ 2 

Then a satisfies the sum rules of order 1. But the polynomial a(z) is irreducible. 

It is easy to verify that a satisfies the sum rules of order 1. Let us show that 
a(z) is irreducible. Suppose to the contrary that a(z) is reducible. Then a(z) can 
be factored as 

a(z) = f(z)g(z), 

where f and g are polynomials of (total) degree at least 1. Since the degree of a(z) 
is 3, the degree of either f or g is 1. Suppose the degree of f is 1 and 

f (Zli, Z2) = Az, + AZ2 + Vi, 

where A,ft, iv are complex numbers and either A 74 0 or u 74 0. If A 74 0, then for all 
Z2 E C, f(-(4Z2 + V)/A, Z2) = 0, and so 

a(-(CZ2 + V)/A, Z2) = 0 VZ2 E C. 

If u 74 0, then &(-(-UZ2 + V)/A, Z2) is a polynomial of Z2 of degree 3 with -1/A being 
its leading coefficient. Hence ,u = 0. But it is also impossible that &j-v/A, Z2) = 0 
for all Z2 E C. Thus, we must have A = 0, and hence 6(zi, -v/p) = 0 for all z1 E C. 
However, &(zi, -v/l) is a polynomial of zi of degree 2 with 1 being its leading 
coefficient. This contradiction shows that a(z) is irreducible. 

Let a be the sequence given as above, and let X be the normalized solution of 
the refinement equation 

d= a(a)q(2 -). 

Then X lies in L2(R 2). This can be verified by using the results in [12]. Let b be 
the element in fo(22) given by its symbol 

b(z) := p(z)12/4 for Iz1I = 1 and IZ21 =1. 

We have 

4b(z) = 4+zi +z 1 +Z2 +Z2 +ZZ2 +Z Z2 

+ 1zz 1+ z 1 Z2 + Z1Z- 2 + Z lZ22+ z2z- 1 + z-2Z 
1 1 -2 -12 2 1 2 
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Let B be the linear operator on to (22) given by 

Bv(a) := E b(2a-/3) v(3), Ce E 22, 
03E2 

where v E to(22). Let W be the B-invariant subspace generated by --ei +26-8e 

and -6-e2 + 26- 6e2. Then the spectral radius p of the linear operator B w is 3/4. 
Since p < 1, by [12, Theorems 3.3 and 4.11, the subdivision scheme associated with 
a is L2-convergent. Therefore, X E L2(1R2) and the shifts of X are orthonormal (see 
[11]). We conclude that the optimal order of approximation provided by $(X) is 1. 

If the refinement mask a satisfies the sum rules of order k, then the normalized 
solution X of the refinement equation with mask a has accuracy k. However, if 
the condition N(q) n (2r(MT)-lQ) = 0 is not satisfied, then X could have higher 
accuracy. For instance, the function X on R given by q(x) = 1/2 for 0 < x < 2 and 
q(x) = 0 for x E R \ [0, 2) satisfies the refinement equation 

= Z 
a(a)q5(2. -a), 

C1EZ 

where the symbol of the mask a is a(z) = 1 + z2. Then a does not satisfy the sum 
rules of order 1. But X has accuracy 1, and $(X) provides LOO-approximation order 
1. The following is an example in the two-dimensional case. 

Example 4.2. Let X be the Zwart-Powell element defined by its Fourier transform 

?0(41, 42) := 9(1) 9(42) 9(4l +42) 9(-4l +42)i (41 I 2) E R 

where g is the function on R given by ( X-4 (1 - eE)/(it), R E R. Then X is a com- 
pactly supported continuous function on R12 and $(X) provides LOO-approximation 
order 3. On the other hand, X is refinable but the corresponding mask does not 
satisfy the sum rules of order 3. 

For the first statement the reader is referred to [5, p. 72]. Let us verify the second 
statement. From [5, p. 140] we know that the Zwart-Powell element X is refinable 
and the corresponding mask a is given by a(a) = 0 for ae 22 \ [-1, 2] x [0, 31 and 

0 1 1 0 

(al C2)1<a,,<2,0<Ce2<3 4 1 2 2 1 

Evidently, the mask a satisfies the sum rules of order 2, but a does not satisfy the 
sum rules of order 3. Note that (r, ir) E N(q) in this case. 

Example 4.3. Let M be the matrix 

and let a be the sequence on 22 such that a(o) = 0 for a e 22 \ [-2, 212 and 

0 -1 0 -1 0 
-1 0 10 0 -1 

(a(aCl, ?C2))-2<c?j,a2?<2 0 10 32 10 0 
-1 0 10 0 -1 

L0 -1 0 -1 0i 
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Let X be the normalized solution of the refinement equation (1.1) with mask a and 
dilation matrix M given as above. Then q is a compactly supported continuous 
function on R2, and the olitimal approximation order provided by S(X) is 4. 

Let us verify that a satisfies the sum rules of order 4. We observe that a 
(Cel, Ia2) lies in MZ2 if and only if a1 + a2 is an even integer. Hence the sum rule 
for a polynomial p of two variables reads as follows: 

Z p(ae)a(a()= 
= 

p(f)a(f), 
Ce 1 +Ce2 E 2Z /31+02?2Z 

that is, 

32p(O,0) = 10 S P(al,a2)- E p(ai,a2) 
I Cel I+ ICe2 1=1 I Cel I+ ICe2 1=3 

We can easily verify that this condition is satisfied for all p E H13, but it is not 
satisfied for the monomial p given by p(x, x2) = X2x2I (x1, x2) E R2 . Therefore 
the refinement mask a satisfies the sum rules of order 4, but not of order 5. 

In the present case, Q := {(0, 0), (1, 0)} is a complete set of representatives of 
the distinct cosets of Z2/MTZ2. We have 27r(MT)-lQ = {(0, 0), (wr, r)}. Since 

q(0, 0) = 1, in order to verify the condition N() n (27r(MT)-lQ) - 0, it suffices 
to show that q(7r, ir) 74 0. For this purpose, we observe that 

00 

q3(() = fJ H((MT)-k() E 22 
k=1 

where 

H(() = [32 + 20(cos 4j + cos 2) -4 cos (241 + 2)-4 cos (Qj + 22)] /64, 

= (41,(E) E 

We have (MT)-1(r, 1r)T = (0,wr)T and H(O, 7r) > 0. Suppose 

(1, 2)T = (MT) k(7, )T 

for some integer k > 2. Then Jmj I < 7r/2 and I'2l < r/2, so H(iqj,iq2) > 0. It 

follows that q(7r, wr) 7# 0. Consequently, the exact accuracy of X is 4. 
By using the methods in [12], we can easily prove that the subdivision scheme 

associated with mask a and dilation matrix M converges uniformly. Consequently, 
X is a continuous function. We conclude that the optimal approximation order 
provided by $(X) is 4. 

5. THE SUBDIVISION AND TRANSITION OPERATORS 

We introduce two linear operators associated with a refinement equation. One 
is the subdivision operator, and the other is the transition operator. When the 
dilation matrix M is 2 times the identity matrix, the spectral properties of the 
subdivision and transition operators were studied in [10] and [18]. III this section, 
we extend the study to the case in which M is a general dilation matrix. 

Let X and Y be two linear spaces, and T a linear mapping from X to Y. The 
kernel of T, denoted by ker (T), is the subspace of X consisting of all x E X such 
that Tx = 0. 
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Let a be an element in to (ZS) and let M be a dilation matrix. The subdivision 
operator Sa is the linear operator on f(2s) defined by 

Satu(a) := Z a(a -Mf )u(f), a? E S, 
/3(EZs 

where u E 1(/s). The transition operator Ta is the linear operator on fo(Zs) 
defined by 

Tav(a) := a(Ma - 3)v(/3), a E Es, 
/3GZs 

where v E too(Z'). 
The following theorem shows that the subdivision operator Sa and the transition 

operator Ta have the same nonzero eigenvalues. We use I and Io to denote the 
identity mapping on ?(Z') and to (Z), respectively. 

Theorem 5.1. The transition operator Ta has only finitely many nonzero eigen- 
values. For a E C \ {0}, the linear spaces ker (Sa - uf) and ker (T - a-lIo) have 
the same dimension. In particular, a is an eigenvalue of Sa if and only if it is an 
eigenvalue of Ta. 

Proof. For N = 1, 2, ..., let EN denote the cube [-N, N]J. Choose N such that 
EN-1 contains suppa a E 7 E: a (a) 74 0}. Let K :Z= 5E 'ILO M-ENE. In 

other words, x belongs to K if and only if x = Zn=1 M-nyn for some sequence 
of elements Yn E EN. Let 1(K) denote the linear space of all (finite) sequences on 
K n z7. Consider the linear mapping A on 11(K) given by 

Av (a) := E a(Ma- 3)v(3), a E KnZs, 
I3EKnZs 

where v E 1(K). The dual mapping A' of A is given by 

A'u(3):= E u(a)a(Ma- 3), E K n Z, 
alEKnsE 

where u E 1(K). Let IK denote the identity mapping on 1(K). Since 1(K) is finite 
dimensional, we have 

dim (ker (A - 0IK)) = dim (ker (A' - 0IK)). 

Thus, in order to establish the theorem, it suffices to prove the following two rela- 
tions: 

(5.1) dim (ker (Ta - aIo)) = dim (ker (A - UIK)) 

and 

(5.2) dim (ker (Sa -0I)) = dim (ker (A' - aIK)). 

For this purpose, we introduce the sets Kj (j = 0,1, ...) as follows: 

Kj :=Mj-El + *+El+K. 

In particular, Ko = K. Evidently, Kj C Kj+l for j 0, 1,..., and R' = U?1 oI. 
Moreover, 

(5.3) M-1(Kj + supp a) C Kj_l, j = 1,2. 
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Indeed, we have M1K- + M-1EN = K, and hence 

M1K +suppa) ~C lVjj2E- + + E1 + M-lE1 + M1K+ MlEN-1 

C Kj_-1 

Suppose a 74 0 and v E ker (Ta - uIo). Then suppv C Kj for some j > 1. We 
observe that TaV(a) zh 0 implies Ma -43 E supp a for some ,3 E Kj . It follows that 
a E M-1(suppa+Kj) C Kjp-1, by (5.3). In other words, supp(Tav) C Kj-1. Using 
this relation repeatedly, we obtain supp (Tgjv) C K. But v = Tav/vu = (Tgav)/i. 
Therefore, supp v C K, and vlKnzS belongs to ker (A - IK) This shows that 
the restriction mapping P : v - VlKnzS maps ker (Ta - uIo) to ker (A - JIK). 
Moreover, vlKnzS = 0 implies v = 0. So P is one-to-one. Let us show that P is also 
onto. Suppose Aw = uw for some w E f(K). Define v(a) := w(a) for a E K n Z7 
and v(a) := 0 for a E /9 \ K. Then Tav = (v. Thus, P is one-to-one and onto, 
thereby establishing (5.1). 

In order to prove (5.2), we consider the mapping Q: u -* U*I KnzS, where u* is 
the sequence given by u*(a) := u(-a), a e Z/9. Suppose u E ker (Sa - aI). Then 

u(a) Z a(a-MfM)u(/3), a E Zs. 

/3EZs 

It follows that 

u* (a) = u* (*3)a(M3 - a), a E zS . 
/37s 

For ae Kj (j > 1), a(M/3-a) z 0 only ifE e M-1(suppa+Kj) C Kpi. Hence 

(5.4) u*(a)=! , u*(f3)a(M/3-a) for aCKjnZS. 
OEKj-i nz- 

This shows that u*lK7nzs belongs to ker (A' - JIK). Thus, Q maps ker (Sa - uf) to 
ker (A' - JIK). Moreover, if u* (a) = 0 for a e K n ZS, then it follows from (5.4) 
that u* (a) = 0 for a E Kj n Zs, j = 1, 2, .... But Rs = U"1 1 Kj; hence u* (a) = 0 
for all a e 7Zs. Thus, the mapping Q is one-to-one. It is also onto. Indeed, if 
w E ker(A' - JfK), then 

w(e)=1 w(C3)a(MO3-a), a E K n ZS. 
OE KnZ-, 

For a E K n ZS, let u* (a) := w(a); for a E (Kj \ Kj) n Z7 (j = 1, 2,...), let 
u*(a) be determined recursively by (5.4). Then u c ker (Sa - uf) and Qu w. 
Thus, Q is one-to-one and onto, so that (5.2) is valid. The proof of the theorem is 
complete. D 

A sequence u on /9 is called a polynomial sequence if there exists a polynomial 
p such that u(a) = p(a) for all a e 7ZS. The degree of u is the same as the degree 
of p. For a nonnegative integer k, let Pk be the linear space of all polynomial 
sequences of degree at most k, and let 

Vk {V E fo(2s): 5 P(a)V(a) = 0 VP E Hk}. 
CeEZs 
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For u E (ZS) and v E fo(Zs), we define 

(u, v) := E u(ae)V(a). 

Theorem 5.2. Let M be an s x s dilation matrix and Q a complete set of repre- 
sentatives of the distinct cosets of ZS/MTZS. For any a E fo(Zs), the following 
statements are equivalent: 
(a) The sequence a satisfies the sum rules of order k + 1. 
(b) Vk is invariant under the transition operator Ta. 
(c) Pk is invariant under the subdivision operator Sa. 
(d) D/-H(27r(MT)-lw) = 0 for all lp1 < k and all w E Q \ {O}. 

Proof. (a) => (b): Let p C Ilk and v C Vk. We have 

S p(a)TaV(a) = 5[ p(a)a(Ma -f3) v(f3). 
cEZ-S 36Zs a76S 

Let q(x) p(M-lx), x E RS. Then p(x) = q(Mx), x E R'. By Taylor's formula, 
we have 

q(Ma) = q(Ma - + f) = 5 q(Ma - f3)f13, 
11ij<k 

where ql, DlAq/l! C ITk . Hence 

5 p(a)a(Ma - f) = , q(Ma)a(Ma - c3) = 5 cl 
afEzs aEzs 1I1 <k 

where 

cA :=S q(Ma -)a(Ma -) 
a7zs 

is independent of /3, by condition (a). Thus, we obtain 

E p(a)Tav(a) = 5 c, 5 f31v(/3) = 0, 
aczcs Ipj<k fEZS 

because v E Vk. This shows that TaV C Vk for v E Vk. In other words, Vk is 
invariant under Ta- 

(b) => (c): Suppose p C Pk. We wish to show that u Sap lies in Pk. We claim 
that (u, v) = 0 for all v E Vk. Indeed, 

(u,v) = 5 u(a))v(a) = 5 5 a(a - M/)p(/)v(a) 
Otcz- acz-g OCZ- 

= 5 p(-/) 5 a(M/ - a)v(-a) = 5 (-)w(), 
7Z8s c7zs 6Z8s 

where w := Tav* with v* given by v*(a) = v(-a), ae 7 /J. Since Vk is invariant 
under Ta and v* c Vk, we have w e Vk. It follows that 

(u, v) = E p(-3)w(3) = 0. 
/6ZS 

For a multi-index ,u with l,l = k + 1, we have VI'6c E Vk for all a E 7/. Hence 
(u, VA68c,) = 0. In other words, VAuu(a) = 0 for all ae 7 Zs and Iu = k + 1. This 
shows that u is a polynomial sequence of degree at most k. 



APPROXIMATION PROPERTIES OF MULTIVARIATE WAVELETS 661 

(c) => (a): For p E Hk, let q(y) := E 2zs a(MO + y) p(MO + y) for y C Zs. We 
claim that q is a polynomial sequence. Indeed, by using Taylor's formula, we have 

p(M3 +?y) = E t(MO)tylt 
II-tl<k 

where t, := Dl'p/l!. Set q,,(3) := t(-M/3) for 3 E Zs. Then for ay C Zs, 

qQ(y) ZE a(MO + y) p(MO + y) 
~37s 

= S S (y + MO)?M3) q,(-) yl =E (Saqt1)(y) -y. 
EeZs 1i1j<k jpj?<k 

Note that ql, is a polynomial sequence of degree at most k. By condition (c), Saq,j 
is a polynomial sequence; hence so is q. We observe that q(-y + Miq) = q(-y) for all 
r1 E Zs and -y E Zs, that is, q is a constant sequence on the lattice -y + MZS for each 
-y E Es. Hence q itself must be a constant sequence. This verifies condition (a). 

Finally, the equivalence between (a) and (d) was proved in Lemma 3.3. D 

We remark that the equivalence between (c) and (d) was proved in [7, p. 98] for 
the case when the dilation matrix M is 2 times the identity matrix. 

6. SMOOTHNESS AND APPROXIMATION ORDER 

In this section we discuss the relationship between approximation and smooth- 
ness properties of a refinable function. 

Suppose X satisfies the refinement equation (1.1) with the dilation matrix M 
being 2 times the identity matrix. It was proved by Jia in [18] that X C Wk(Rs) 
and X(O) 74 0 imply that Ilk C $(q)) and $(q) provides approximation order k + 1. 
This result improves an earlier result of Cavaretta, Dahmen, and Micchelli about 
polynomial reproducibility of smooth refinable functions (see [7, p. 158]). 
- The above results can be extended to the case in which the dilation matrix is 

isotropic. Let M be an s x s matrix with its entries in C. We say that M is isotropic 
if M is similar to a diagonal matrix diag{Al,., A.} with 1A1 = *-- = lAs. For 
example, for a, b E JR, the matrix 

(a -b) 
tb aJ 

is isotropic. Obviously, a matrix M is isotropic if and only if its transpose MT is 
isotropic. 

Lemma 6.1. Let M be an isotropic matrix with spectral radius a. For any vec- 
tor norm fl on Rt , there exist two positive constants C, and C2 such that the 
inequalities 

Cl(Jf|V|| < flMvlMV| < C2U'flVfl 

hold true for every positive integer n and every vector v C Rs 

Proof. Since M is isotropic, we can find a basis {v1,.... , vsI for CS such that Mvj = 

Ajvj with IA1 I= .=A, I = a. Recall that two norms on a finite-dimensional linear 
space are equivalent. Hence there exist two positive constants C, and C2 such that 

C, E laj ? < llvll < C2E laj I for v = Z ajvj. 
j=1 j=1 j=l 
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But for v = Ej= ajvj we have M'v = E=l ajAjvj. It follows that 

s s 

HJVnJv| < C2E SaAnj = C2Un E |ajI < C2Cu vf||V|| 
j=l j=1 

and 
s s 

flMnvfl > Ci E lajA5 j = Ciu" E lajl > CiC21a(jjvlvjj. 
j=1 j=1 

This completes the proof of the lemma. 

Lemma 6.2. Let M be an isotropic matrix with spectral radius a. For an infinitely 
differentiable function f on RS, let 

fn() := f ((MT)n%), E is, n = O,1, 2. 

Then, for each positive integer r, there exists a positive constant C depending only 
on r and the matrix M such that 

(6.1) max DI' fnQ7) < CU,n maxI D Mf((MT)n%) V E R 
4 j=r 

Proof. Let B = (bpq)i<p,q<s be the matrix (MT)n. By the chain rule, for j - 

1, ... , s, we have 

Djfn(() - (b1jD1 + ' + bs3Ds)f ((MT)n)O, R's 

Hence, for a multi-index ,t (,i1... , ps) with It,l = r, 
s s 

DI' fn ()= D"it fn (( |(b1 j Di + + bs - Ds )Ajf(MT l)v !E Rs 
j=1 j=1 

By Lemma 6.1, there exists a constant Ci > 0 depending only on the matrix M 

such that I bpq ? < Ci &n for all p, q. We may express Hl 1=: (b1 j D1 + + bsj Ds )i'j as 

ZIl=r cVDV, where each cv is a linear combination of products of r factors of the 

bpq's. Hence there exists a positive constant C depending only on r and the matrix 

M such that IcvI < C-rn for all IvI = r. This proves (6.1). D 

Now we are in a position to establish the main result of this section. 

Theorem 6.3. Suppose M is an s x s isotropic dilation matrix, and a is an ele- 
ment in fo(7s) satisfying (1.2). Let 0 be the normalized solution of the refinement 
equation (1.1). If X C W1j(Rs), then Hk C ?(q) and ?(q) provides approximation 
order k + 1. 

Proof. Since q(0) = 1, in order to prove $(f) D Elk, it suffices to show that for 

1/_t < k, 

(6.2) DItq(27rw) = 0 VE c 7ES \ {to} 

The proof proceeds with induction on lil, the length of ft. 
Let H be the function given in (3.2). A repeated application of (3.1) yields that, 

for n=1, 2,.... 

[P H((MT)k)] j ) ((MT)-n)j R S. 
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It follows that 

(6.3) 0((y1T) n) hn(0()?Oi) C R 2 

where hn (15) :=Jn_n H((MT)j-l!). Note that H is 27r-periodic and H(O) 1. 
Thus, we have 

(27r(MT)n/3) =[17 H(2(MT)i13)] q(2/J7) = q(2/37), 3 s 
j3=1 

If 0 c L1 (Rs), then by the Riemann-Lebesgue lemma we obtain 

0(2/7r) = lim &(2-F(MT)n/) = 0 V/ C Zs \ {fJ} n--oc 

This establishes (6.2) for ,tt= 0. 
Let 0 < r < k. Assume that (6.2) has been proved for It,l < r. We wish to 

establish (6.2) for It,l =r. For this purpose, we deduce from (6.3) that 

q5(() fn (() [1/hn R(() 
S J s 

where fn(,) : 5((MT)nt), ( E Rs. By using the Leibniz formula for differentiation, 
we get 

(6.4) D'qQtk) = f (I)Dvn(f ) D' [1/hl]((), R C E- 

But, for /3 /s \ {0} and ivl < r, we have D7fn (2wr/) = 0, by the induction 
hypothesis. When v = ji, we have [1/hn](2r/) = 1. Hence it follows from (6.4) 
that 

(6.5) D"`5(27ro) = D"fn(2r0), /3 c/S \ {o}. 

By Lemma 6.2, we have 

(6.6) | DI fn (2F/3) < C urn max Dv? ((MT)n2qr/3) , / /S \ {(} 
lt'l=r 

7S\ti 

where C > 0 is a constant independent of n. 
In what follows, we use vj to denote the jth coordinate of a vector v in RS* For a 

multi-index v = (vi,... , vs), let 0, be the function given by 0,(x) = (-ix)P0(x), 
x c Rs. Then D71$ q7 and 

((-iD )rr )AS)=:Dv)(:S)j (~j .. 41 :ts) (E Rs 

Since W C k (Rs), we have (-iDj )rq7 C Li (Rs). Thus, by the Riemann-Lebesgue 
lemma, we obtain 

lim ((MT)n/)r D t'q(2wF(MT)n3) = 0 for 0 C /s \ {0}. 

This is true for j = 1, . . . , s; hence it follows that 

lim jj(MT)n/jjrD Dqs(27r(MT)nf) = 0 for 0 . /s \ {0}, 
n-*oc 

where is a vector norm on RS. By Lemma 6.1, there exists a positive constant 
Ci > 0 independent of n such that 

C10n 113'11 < II(MT)n/31 
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Therefore 

lim onrDvqD(2w(MT)n/) 0 for 3 E 7s \ {Zs } 
n-oo 

This in connection with (6.5) and (6.6) tells us that Dbq(2w/13) = 0 for It,l = r and 
/ Z /s \ {0}. The proof of the theorem is complete. LI 

Recall that Q is a complete set of representatives of the distinct cosets of 
ZS/MT7s. Thus, as a consequence of Theorem 6.3, we conclude that if the nor- 
malized solution 0 of the refinement equation (1.1) lies in Wkj(Rs), and if N(q) n 
(27r(MT)-lQ) 0, then the refinement mask a satisfies all the conditions in The- 
orem 5.2. 
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