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APPROXIMATION PROPERTIES OF
MULTIVARIATE WAVELETS

RONG-QING JIA

ABSTRACT. Wavelets are generated from refinable functions by using multires-
olution analysis. In this paper we investigate the approximation properties of
multivariate refinable functions. We give a characterization for the approxi-
mation order provided by a refinable function in terms of the order of the sum
rules satisfied by the refinement mask. We connect the approximation prop-
erties of a refinable function with the spectral properties of the corresponding
subdivision and transition operators. Finally, we demonstrate that a refinable
function in Wlk ~1(R*) provides approximation order k.

1. INTRODUCTION

We are concerned with functional equations of the form

(1.1) $=> ale(M - —a),

a€Zs

where ¢ is the unknown function defined on the s-dimensional Euclidean space R,
a is a finitely supported sequence on Z°, and M is an s x s integer matrix such that
lim,_ o M~ = 0. The equation (1.1) is called a refinement equation, and the
matrix M is called a dilation matrix. Correspondingly, the sequence a is called
the refinement mask. Any function satisfying a refinement equation is called a
refinable function.

If a satisfies

(1.2) Z a(a) =m :=|det M|,
a€Zs

then it is known that there exists a unique compactly supported distribution ¢
satisfying the refinement equation (1.1) subject to the condition $(0) = 1. This
distribution is said to be the normalized solution to the refinement equation with
mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in
[7, Chap. 5] for the case in which the dilation matrix is 2 times the s x s identity
matrix I. The same proof applies to the general refinement equation (1.1).

Wavelets are generated from refinable functions. In [20], Jia and Micchelli dis-
cussed how to construct multivariate wavelets from refinable functions associated
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with a general dilation matrix. The approximation and smoothness properties of
wavelets are determined by the corresponding refinable functions.

In [9], DeVore, Jawerth, and Popov established a basic theory for nonlinear
approximation by wavelets. In their work, the refinement mask was required to
be nonnegative. In [15], Jia extended their results and, in particular, removed the
restriction of non-negativity of the mask.

Our goal is to characterize the approximation order provided by a refinable
function in terms of the refinement mask. This information is important for our
understanding of wavelet approximation.

Before proceeding further, we introduce some notation. A multi-index is an s-
tuple u = (p1,- .. , pbs) with its components being nonnegative integers. The length
of pis |p| := w1 + -+ + us, and the factorial of p is p! := pg!--- pg!. For two
multi-indices u = (p1,...,us) and v = (v1, ... ,vs), we write v < p if v; < p; for
j=1,...,s. If v < p, then we define

() = oo

For j =1,...,s, D; denotes the partial derivative with respect to the jth coordi-
nate. For p = (u1,...,us), D* is the differential operator D" - -- D#s. Moreover,
p, denotes the monomial given by

pul@) =¥t @= (... ,3,) €R.

The total degree of p,, is |1|. For a nonnegative integer k, we denote by IIj, the linear
span of {p,, : || < k}. Then II := ;- IIx is the linear space of all polynomials of
s variables. We agree that II_; = {0}.

The Fourier transform of an integrable function f on R? is defined by

fe) = 5 f@)e ™ Cdz,  E€R,

where « - £ denotes the inner product of two vectors z and £ in R°. The domain of
the Fourier transform can be naturally extended to include compactly supported
distributions.

We denote by £(Z*°) the linear space of all sequences on Z°, and by £y(Z°) the
linear space of all finitely supported sequences on Z°. For a € Z°®, we denote by
6o the element in £o(Z°) given by §,(a) = 1 and 6,(8) = 0 for all § € Z° \ {a}.
In particular, we write § for 6o. For j =1,...,s, let e; be the jth coordinate unit
vector. The difference operator V; on £(Z°) is defined by Vja := a — a(- — ¢;),
a € Y(Z°). For a multi-index p = (u1,...,us), V# is the difference operator
Vll‘l oo Vhs,

For a compactly supported distribution ¢ on R® and a sequence b € ¢(Z®), the
semi-convolution of ¢ with b is defined by

¢¥'bi= Y (- — a)b(a).
a€Zs

Let S(¢) denote the linear space {¢+'b : b € £(Z°)}. We call S(¢) the shift-
invariant space generated by ¢. More generally, if ® is a finite collection of
compactly supported distributions on R®, then we use S(®) to denote the linear
space of all distributions of the form 3° 4 ¢+'by, where by € £(Z°) for ¢ € ®.

Here is a brief outline of the paper. In Section 2 we clarify the relationship
between the order of approximation provided by S(¢) and the accuracy of ¢, the
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order of the polynomial space contained in S(¢). In Section 3 we introduce the so-
called sum rules and give a characterization for the accuracy of a refinable function
in terms of the order of the sum rules satisfied by the refinement mask. In Section 4,
several examples are provided to illustrate the general theory. Section 5 is devoted
to a study of the subdivision and transition operators and their applications to
approximation properties of refinable functions. Finally, in Section 6, we show that
a refinable function in W{(R?®) associated with an isotropic dilation matrix has
accuracy at least k + 1.

2. APPROXIMATION ORDER AND POLYNOMIAL REPRODUCIBILITY

Let ¢ be a compactly supported function in L,(R®) (1 < p < c0). In this section
we clarify the relationship between the order of approximation provided by S(¢)
and the degree of the polynomial space contained in S(¢). The reader is referred
to [17] for a recent survey on approximation by shift-invariant spaces.

The norm in L,(R®) is denoted by ||-||,. For an element f € L,(R®) and a subset
G of L,(R?®), the distance from f to G, denoted by dist,(f, G), is defined by

disty(f, @) := inf [l = gl

Let S := S(¢)NL,(R®). For h > 0, let S"* := {g(-/h) : g € S}. For a real number
Kk > 0, we say that S(¢) provides approximation order « if for each sufficiently
smooth function f in L,(R®), there exists a constant C' > 0 such that

dist,(f,S") <Ch®  Vh>0.

We say that S(¢) provides density order « (see [3]) if for each sufficiently smooth
function f in L,(R?),

lim dist(f, SMy /"~ =0

Let k be a positive integer. Suppose S(¢) D IIy_1. Does S(¢p) always provide
approximation order k7 The answer is a surprising no. The first counterexample
was given by de Boor and Héllig in [4] by considering bivariate C'-cubics. Their
results can be described in terms of box splines.

For a comprehensive study of box splines, the reader is referred to the book [5]
by de Boor, Hollig, and Riemenschneider. For our purpose, it suffices to consider
the box splines M, ;. given by

P 1—e ®i\r, ] —e2\s,] — e t61+€2)\ ¢ )
Mr,s,t(é.) - ( 151 > ( 252 > ( 1(51 +£2) ) ’ g'_ (51,52) €eR y
where r, s, and ¢ are nonnegative integers. It is easily seen that M, ,; € LOO(JRQ) if
and only if min{r +s,s+t,t +r} > 1. Let ¢1 := Ma1,2 and ¢ := My 22. In [4],
de Boor and Hoéllig proved that S(¢1, ¢2) 2 I3 but S(¢1, ¢2) does not provide Lyo-
approximation order 4. In fact, the optimal L..-approximation order provided by
S(¢1, ¢2) is 3. In [21], Ron showed that there exists a compactly supported function
1 in S(¢1, ¢2) such that I3 C S(). Since S(¢p) C S(¢1, P2), the approximation
order provided by S(v) is at most 3.

In [6] de Boor and Jia extended the results in [4] in the followmg way. For
p=1,2,..., let k be an integer such that 2p+2 <k <3p+ 1. Let

®:={M, ;€ C°(R*) :r+s+t<k+2}.
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Then S(®) D I, but the optimal L,-approximation order (1 < p < co) provided
by S(®) is k, not k + 1.

However, if S(¢) provides approximation order k, then S(¢) contains IIx_;. This
was proved by Jia in [16]. Under the additional condition that $(0) # 0, it was
proved by Ron [21] that S(¢) provides Lo.-approximation order k if and only if S(¢)
contains II;_;. In general, we have the following results, which were established in
[16].

Theorem 2.1. Let 1 < p < oo, and let ¢ be a compactly supported function in
L,(R®) with qB(O) # 0. For every positive integer k, the following statements are
equivalent:

(a) S(¢) provides approzimation order k.

(b) S(¢) provides density order k — 1.

(c) S(¢) contains ITj_;.

(d) Dt¢(2nB) = 0 for all p with |u| <k —1 and all 8 € Z5 \ {0}.

We remark that the implications (a) = (b) = (¢) = (d) are valid without the
assumption $(0) # 0. Indeed, (a) = (b) is obvious, (b) = (c) was proved in [16],
and the implication (¢) = (d) was established in [2].

Suppose ¢ is the normalized solution of the refinement equation (1.1). If ¢ lies
in L,(IR?®) for some p, 1 < p < 00, then Theorem 2.1 applies to ¢, because gi;(O) =1.
Thus, there are two questions of interest. The first question is how to determine
whether ¢ lies in L,(IR®), and the second problem is how to characterize the highest
degree of polynomials contained in S(¢). The first question was discussed by Han
and Jia in [12]. In this paper, we concentrate on the second question. When we
speak of polynomial containment, ¢ is not required to be an integrable function.
Thus, we say that a compactly supported distribution ¢ on R® has accuracy k, if
S(¢) D Ix—1 (see [13] for the terminology of accuracy).

We point out that the equivalence between (c) and (d) in Theorem 2.1 remains
true for every compactly supported distribution ¢ on R*.

If ¢ is a compactly supported continuous function on R?®, and if ¢ satisfies con-
dition (d), then it was proved in [14] that

(2.1) ¢x'p=¢(—iD)p  VpeTIl_y,

where 7 is the imaginary unit and qg(—iD) denotes the differential operator given
by the formal power series

52290 iy

|
o M

For a given polynomial p, D#p = 0 if |u| is sufficiently large. Thus, gg(—iD) is
well defined on II. We indicate that (2.1) is also valid for a compactly supported
distribution ¢ on R?® satisfying condition (d). To see this, choose a function p €
C2°(R?®) such that 5(0) = 1 and D¥p(0) = 0 for all v with 0 < |v| < k — 1. Let
pn = p(-/n)/n® for n =1,2,.... Then for each n, ¢, := ¢xp,, the convolution of
¢ with p,, is a function in CS°(R®). Moreover, the sequence (¢, )n=1,2, .. converges
to ¢ in the sense that

Jim (6, ) = (&) V[ eCR)
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See [1, p. 97] for these facts. Thus, we have ¢, (€) = ¢(€)pn(€) for € € R*. Since
¢ satisfies condition (d), by using the Leibniz formula for differentiation, we get
Dt¢,(2nf8) = 0 for |u] < k—1and B € Z° \ {0}. Hence (2.1) is applicable to ¢,
and

¢n*/p: an(—iD)p Vp e li_q.

Letting n — oo in the above equation, we obtain ¢+'p = ¢(—iD) p for all p € IT;_;.
Consequently, the linear mapping ¢«’ given by p — ¢*'p maps II;_1 to g_1. If,
in addition, $(0) # 0, then this mapping is one-to-one, and hence it is onto. This
shows that (d) = (c) is valid for every compactly supported distribution ¢ on RS
with ¢(0) % 0.

Next, we show that (c) = (d) for every compactly supported distribution ¢ on
Rs. If ¢ is a compactly supported continuous function on R®, this was proved
in [2] and [14]. Let ¢ be a compactly supported distribution on R*. For a fixed
element § € Z° \ {0}, choose a function p € C°(R®) such that p(0) # 0 and
p(27B3) # 0. Then the convolution ¢+p is a function in C°(R®) and its Fourier
transform is gﬁ,ﬁ. Note that the mapping p+* given by ¢ — p*xq maps IIx_; to IIx_1.
Since p(0) # 0, this mapping is one-to-one; hence it is onto. Thus, for p € M_1,
we can find ¢ € II;_ such that p = pxq. Since S(¢) D IIx_1, there exists some
b € ¢(Z®) such that ¢ = ¢«'b. It follows that p = px(¢+'b) = (p*¢)*’b. This shows
that S(¢#p) D Mj_;. By what has been proved, D*(¢p)(2r3) = 0 for all u with
lul < k —1. Since p(273) # 0, we can write ¢ = ($p)(1/5) in a neighborhood of
2m(3. By applying the Leibniz formula for differentiation to this equation, we obtain
DF¢(2mB) = 0 for || < k — 1. This shows that (c) = (d) for every compactly
supported distribution ¢ on R*.

To summarize, a compactly supported distribution ¢ on R® with qAﬁ(O) # 0 pos-
sesses accuracy k if and only if D#¢(2r8) = 0 for all u with |u| < k — 1 and all

B €z \ {0}.

3. CHARACTERIZATION OF ACCURACY

The purpose of this section is to give a characterization for the accuracy of a
refinable function in terms of the refinement mask.

For an s x s dilation matrix M, let I" be a complete set of representatives of
the distinct cosets of Z°/MZ*, and let Q be a complete set of representatives of
the distinct cosets of Z°/M7TZ*, where M” denotes the transpose of M. Evidently,
#I' = #Q = | det M|. Without loss of any generality, we may assume that 0 € "
and 0 € Q.

Suppose a is a finitely supported sequence on Z* satisfying (1.2). Let ¢ be the
normalized solution of the refinement equation (1.1). Taking Fourier transform of
both sides of (1.1), we obtain

(3.1) $(6) = H(M") 6 $((MT)7'¢),  EeRe,

where

(3.2) H(¢) = Z a(a)e™™ ¢ /m, £ e R,
a€ls

Note that H is a 2w-periodic function and H(0) = 1.
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For a compactly supported distribution ¢ on R?, define

N(g):={€ €R®: §(6 +218) =0 V3 € Z°).

If ¢ is a compactly supported function in L,(R®) (1 < p < c0), then the shifts of ¢
are stable if and only if N (@) is the empty set (see [19]).

Theorem 3.1. Let a be a finitely supported sequence on Z° satisfying (1.2), and
let H be the function given in (3.2). If

(3.3) D*H(2n(M™) 'w) =0  Vwe Q\{0} and |u| <k -1,

then the normalized solution ¢ of the refinement equation (1.1) has accuracy k.
Conversely, if ¢ has accuracy k, and if N(¢) N (2m(MT)~1Q) = 0, then (3.3) holds
true.

Proof. Suppose that (3.3) is satisfied. Since H is 27-periodic, (3.3) implies
(3.4) D*H(2n(MT)™'8) =0 VB eZ \(M'Z%) and |u| < k—1.
Let f and g be the functions given by

f&) =H(MT)™') and g(¢):=o(MT)'E), EeRe.

For |u| < k—1 and 8 € Z*° \ {0}, applying the Leibniz formula for differentiation
to (3.1), we obtain

(35) D (2mp) = Y- (1) " f(2ms) Do),
v<p

By using the chain rule, we see that D" f(273) is a linear combination of terms of
the form DYH (2n(MT)~13), where a < v. In light of (3.4), these terms are equal
to 0 if 3 € Z*\ (MTZ#). This shows that D*$(2n8) = 0 for 8 € Z* \ (MTZ?).

We shall prove that, for r = 0,1,..., D*¢(2r8) = 0 for B € (MT)"Z%) \
((MT)+1Zs). This will be done by induction on r. The case r = 0 was established
above. Suppose r > 1 and our claim has been verified for r—1. Let 8 € (MT)"Z*)\
((MT)r+1Z*). Then we have (MT)~'8 € (MT)"=1Z%)\ ((MT)"Z?®). Hence, by
the induction hypothesis, D*@(2m(MT)~18) = 0 for |u| < k — 1. Consequently,
Dtg(2m3) = 0 for all p with |u| < k— 1. This in connection with (3.5) tells us that
D“J)(Qwﬂ) = 0 for |u] < k — 1, thereby completing the induction procedure. The
sufficiency part of the theorem has been established.

Conversely, suppose ¢ has accuracy k and N(¢) N (2r(M7T)~1Q) = (. Then

D*¢(2rB) =0 VB €Z°\ {0} and |u| < k- 1.

Let w € 2\ {0}. Since N(¢) N (2r(M7T)~1Q) = 0, there exists some 8 € Z* such
that ¢(7y) # 0 for v := 278 + 2n(MT)~1w. Thus, the following identity is valid for
¢ in a neighborhood of +:

H(g) = oM7) [1/6()]-

Let h be the function given by & — ¢§(M T¢), ¢ € R®. By using the Leibniz formula
for differentiation, we obtain

D) = 3 () *hie) 2 [1/3] ).

v<p
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By the chain rule, D¥h(v) is a linear combination of terms of the form Danb(M Ty,
where o < v. Note that

M7y = MT(2n8 + 2r(M7T) " w) = 20(MT) B + 27w € 2Z° \ {0}.

Hence D*¢(MT~) = 0 for |a] < k — 1, because ¢ has accuracy k. Therefore we
obtain D¥H (28 + 2n(MT)~1w) = 0 for |u| < k — 1. But H is 2m-periodic. This
shows that D*H (2r(M7T)~'w) = 0 for all w € Q\ {0} and |u| < k — 1, as desired.
The proof of the theorem is complete. O

In the rest of this section we shall show that (3.3) is equivalent to saying that,
for all p € Ilg_1,

(36) > a(MB)p(MB)= > a(MB+~)p(MB+7) Vyel.
BEZs BELS

For this purpose, we first establish the following lemma.
Lemma 3.2. The matriz

L ei27rM_1'y-w
(3.7) Tl )

yelwe
is a unitary one.

Proof. Lety € T'\{0}. We claim that there exists some w’ € 2 such that M ~1vy.w' ¢
Z. Any element 3 € Z° can be represented as M7 o+ w for some o € Z° and w € Q.
Note that (M ~1v)-(MTa) = y-a € Z for all a € Z°. Hence M ~y-w' € Z for all
w' € Q implies that M ~1v-3 € Z for all § € Z°. In other words, M 'y € Z*, and
hence v € MZ?, which contradicts the assumption v € I' \ {0}. This verifies our
claim.

For a fixed element ~ in I \ {0}, let

o= § ei27r1V[_l'y~wA

weN
Choose w’ € 2 such that M~1y-w’ ¢ Z. We have

. -1, 7 . —1 . ’ . -1,
6127rM T = § :61271'(1V[ 7 (wtw') § :61271'1\/[ T — g

weN weN
Since €/2™M v’ £ 1 it follows that o = 0. This shows that
(3.8) SemMTire =g vy el {0}
we

Similarly, we can prove that
(3.9) S Tre =0 vwe )\ {0}
~er

Finally, the matrix in (3.7) is unitary if and only if for every pair of elements
7,7 €T,

LS ey _ {1 iy =,
z : : /
m = 0 ify#4".

For v =+, this comes from the fact #Q = m; for vy 5 «/, this follows from (3.8). O
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Lemma 3.3. Let a be a finitely supported sequence satisfying (1.2), and let H be
the function given in (3.2). Then the following two conditions are equivalent for
every polynomial p:

(a) p(iD) H2m(MT) lw) =0 for allw € 0\ {0}.

(6) X peze a(MB) p(MB) = X pege a(MB +7) p(MB +7) for all y€T.

Proof. By (3.2) we have
mp(iD)H(€) = ) ale)p(a)e ™%, EER.
a€Zs
An element o € Z° can be written uniquely as M + v with § € Z° and v € T".
Observe that, for ¢ := 2r(MT)lw,
—ia-& = —i(MB +7)-2n(MT)lw = —i 21 fw — i 2ny-(MT) " w.
Hence we have
(3.10) mp(iD)H(2r(MT)"'w) = b(y)e 2 M,
yerl
where
b(y) =Y a(MB+7)p(MB+7).
Bezs
Condition (b) says that b(y) = b(0) for all v € I". Hence by (3.9) we deduce from
(3.10) that
mp(iD)H(2r(MT) " tw) = b(0) Y e~ 2 (M = ¢
yel

for all w € 2\ {0}. This shows that (b) = (a).
Conversely, (3.10) tells us that condition (a) implies

Z b(fy)e_iz’rMﬁl"'“’ =0 VYwe\{0}

yel’

Let 1 be an element of I". Then it follows that

Z eiQﬂM_ln-w Z b(,y)e—i%rM_l'y-w _ Z b(’)/)

weN yerl ~yel
On the other hand,

3 G2 > b(y)e—i2M v — DD 2T M =MW — (),

weN yel yer we

since Y, cq ei2™M ™ (n=7)w = ( for v # 7, by Lemma 3.2. This shows mb(n) =

> er b(7). Therefore b(n) = b(0) for all n € I'. In other words, (a) implies
(b). O

If an element a € ¢y(Z°) satisfies (3.6) for all p € IIx_;, then we say that a
satisfies the sum rules of order k. The results of this section can be summarized
as follows: If the refinement mask a satisfies the sum rules of order k, then the
normalized solution ¢ of the refinement equation with mask a has accuracy k.
Conversely, if ¢ has accuracy k, and if N(¢) N (2r(M7T)~1Q) = (), then a satisfies
the sum rules of order k.
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4. EXAMPLES

In this section we give several examples to illustrate the general theory.
The symbol of a sequence a € ¢y(Z?) is the Laurent polynomial a(z) given by

a(2) ==Y a(@)z*,  z€(C\{0}),
a€Zs

where 2 := 2 - - 2%¢ for z = (21,...,25) € C®* and a = (a1,...,a5) €Z°. If a
is supported on [0, N]° for some positive integer N, then a(z) is a polynomial of z.

In the univariate case (s = 1), if a satisfies the sum rules of order k, then a(z)
is divisible by (1 + 2)* (see, e.g., [8]). In the multivariate case (s > 1), this is no
longer true.

Example 4.1. Let s =2 and M = 21, where [ is the 2 x 2 identity matrix. Let a
be the sequence on Z? given by its symbol
a(2) =22+ 2z + 2120 + 2122,
Then a satisfies the sum rules of order 1. But the polynomial a(z) is irreducible.
It is easy to verify that a satisfies the sum rules of order 1. Let us show that

@(z) is irreducible. Suppose to the contrary that a(z) is reducible. Then a(z) can
be factored as

a(z) = f(2)g(2),
where f and g are polynomials of (total) degree at least 1. Since the degree of @(z)
is 3, the degree of either f or g is 1. Suppose the degree of f is 1 and
f(21,22) = A2y + pze + v,
where A, i, v are complex numbers and either A # 0 or p # 0. If A # 0, then for all
zg € C, f(—(pz2 4+ v)/A, z2) =0, and so
a(—(uz2 +v)/X22) =0  Vz eC.

If 4 # 0, then a(—(uz2+v) /A, z2) is a polynomial of 2, of degree 3 with —u /) being
its leading coefficient. Hence u = 0. But it is also impossible that a(—v/A, z2) =0
for all zo € C. Thus, we must have A = 0, and hence a(z1,—v/u) = 0for all z; € C.
However, a(z1, —v/u) is a polynomial of z; of degree 2 with 1 being its leading
coefficient. This contradiction shows that a(z) is irreducible.

Let a be the sequence given as above, and let ¢ be the normalized solution of
the refinement equation

=Y a(@)¢2 —a).
aeZ?

Then ¢ lies in Lp(R?). This can be verified by using the results in [12]. Let b be
the element in £y(Z?) given by its symbol

b(z) := |a(z)]%/4 for |z1] =1 and |z2] = 1.
We have

4b(z) =44z +2i otz oz 2y et

-1 -1 —2 -1,2, 2,-1 -2
+ 2129 + 2y 2ot 21297+ 2 25 2129 + 2 22,
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Let B be the linear operator on £y(Z?) given by
Bu(a) = Z b(2c — B) v(B), a €72

Bez?

where v € £(Z?). Let W be the B-invariant subspace generated by —§_., +26— &,
and —0_, + 26 — 6,. Then the spectral radius p of the linear operator Bly is 3/4.
Since p < 1, by [12, Theorems 3.3 and 4.1], the subdivision scheme associated with
a is Lo-convergent. Therefore, ¢ € Lo(R?) and the shifts of ¢ are orthonormal (see
[11]). We conclude that the optimal order of approximation provided by S(¢) is 1.

If the refinement mask a satisfies the sum rules of order k, then the normalized
solution ¢ of the refinement equation with mask a has accuracy k. However, if
the condition N(¢) N (2r(MT)~1Q) = ( is not satisfied, then ¢ could have higher
accuracy. For instance, the function ¢ on R given by ¢(z) =1/2 for 0 < z < 2 and
¢(z) =0 for z € R\ [0,2) satisfies the refinement equation

$=> a(@)g(2-—a),

a€Z

where the symbol of the mask a is @(z) = 1+ 22. Then a does not satisfy the sum
rules of order 1. But ¢ has accuracy 1, and S(¢) provides L..-approximation order
1. The following is an example in the two-dimensional case.

Example 4.2. Let ¢ be the Zwart-Powell element defined by its Fourier transform

P(&1,62) := g(&1) 9(&2) 9(&1 + &2) 9(—&1 + &2), (&1,&) € R?,

where g is the function on R given by ¢ — (1 —e~%)/(i€), £ € R. Then ¢ is a com-
pactly supported continuous function on R? and S(¢) provides L..-approximation
order 3. On the other hand, ¢ is refinable but the corresponding mask does not
satisfy the sum rules of order 3.

For the first statement the reader is referred to [5, p. 72]. Let us verify the second
statement. From [5, p. 140] we know that the Zwart-Powell element ¢ is refinable
and the corresponding mask a is given by a(a) = 0 for a € Z2 \ [-1,2] x [0, 3] and

01 1 0

111 2 2 1

(a(a1’a2))—15a1§2,0§a2§3 “4l1 2 21
01 10

Evidently, the mask a satisfies the sum rules of order 2, but a does not satisfy the
sum rules of order 3. Note that (7, 7) € N(¢) in this case.

Example 4.3. Let M be the matrix

1 -1
1 1)’
and let a be the sequence on Z? such that a(a) = 0 for a € Z2 \ [-2,2]? and

0 -1 0 -1 0

1 -1 0 10 0 -1
(a(al’az))—zsal,azﬁzﬁ (1) 1(()) ?g 1(()) (1)
0 -1 0 -1 0
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Let ¢ be the normalized solution of the refinement equation (1.1) with mask a and
dilation matrix M given as above. Then ¢ is a compactly supported continuous
function on R?, and the optimal approximation order provided by S(¢) is 4.

Let us verify that a satisfies the sum rules of order 4. We observe that a =
(a1, az) lies in M 72 if and only if a; + ap is an even integer. Hence the sum rule
for a polynomial p of two variables reads as follows:

> pleae)= > pB)as),

o1 +a€2Z B1+P2¢27Z
that is,

32p(0,0) =10 Z plar, ag) — Z plar, as).

la1]+]az|=1 lea[+]az]=3

We can easily verify that this condition is satisfied for all p € II3, but it is not
satisfied for the monomial p given by p(z1,z2) = 7222, (z1,72) € R?. Therefore
the refinement mask a satisfies the sum rules of order 4, but not of order 5.

In the present case, 2 := {(0,0),(1,0)} is a complete set of representatives of
the distinct cosets of Z2/MT7Z2. We have 2x(M7*)~1Q = {(0,0),(m,m)}. Since
#(0,0) = 1, in order to verify the condition N(¢) N (2xr(MT)~1Q) = 0, it suffices
to show that gi;(w, m) # 0. For this purpose, we observe that

$(6) = ﬁ H((M")™*¢),  €eR?,

k=1

where

H (&) = [32 + 20(cos &1 + cos&a) — 4 cos (261 + &2) — 4cos (&1 + 2&2)] /64,
£=(&1,6) € R%
We have (MT)=(m, )T = (0,7)” and H(0,7) > 0. Suppose
(m,m2)" = (M) (m,m)"

for some integer k > 2. Then |m| < 7/2 and |ne| < 7/2, so H(m,n2) > 0. It
follows that ¢(m, ) # 0. Consequently, the exact accuracy of ¢ is 4.

By using the methods in [12], we can easily prove that the subdivision scheme
associated with mask a and dilation matrix M converges uniformly. Consequently,

¢ is a continuous function. We conclude that the optimal approximation order
provided by S(¢) is 4.

5. THE SUBDIVISION AND TRANSITION OPERATORS

We introduce two linear operators associated with a refinement equation. One
is the subdivision operator, and the other is the transition operator. When the
dilation matrix M is 2 times the identity matrix, the spectral properties of the
subdivision and transition operators were studied in [10] and [18]. In this section,
we extend the study to the case in which M is a general dilation matrix.

Let X and Y be two linear spaces, and T a linear mapping from X to Y. The
kernel of T', denoted by ker (T'), is the subspace of X consisting of all z € X such
that Tz = 0.
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Let a be an element in £9(Z?®) and let M be a dilation matrix. The subdivision
operator S, is the linear operator on ¢(Z°) defined by

Squ(a) := Z ala — MB)u(B), ae z°,
BEZ®
where © € £(Z®). The transition operator Ty, is the linear operator on £y(Z°)
defined by

Tov(a) := Z a(Ma — B)v(B), o€ Z’,
Bezs
where v € £y(Z°).
The following theorem shows that the subdivision operator S, and the transition
operator T, have the same nonzero eigenvalues. We use I and Iy to denote the
identity mapping on ¢(Z*) and £y(Z®), respectively.

Theorem 5.1. The transition operator T, has only finitely many nonzero eigen-
values. For o € C\ {0}, the linear spaces ker (S, — oI) and ker (T, — oly) have
the same dimension. In particular, o is an eigenvalue of S, if and only if it is an
eigenvalue of Ty,

Proof. For N = 1,2,..., let Ey denote the cube [-N, N]*. Choose N such that
En_1 contains suppa := {a € Z° : a(a) # 0}. Let K := Y o> M "Ey. In
other words, x belongs to K if and only if x = Zzo:l M~ ™y, for some sequence

of elements y, € En. Let £(K) denote the linear space of all (finite) sequences on
K NZ*. Consider the linear mapping A on £(K) given by

Av(a) := Z a(Ma — B)v(B), ae KNZ,
BEKNZs
where v € £(K). The dual mapping A’ of A is given by
A'u(B) == Z ula)a(Ma — ), BeKNZ?,
acKNZs

where u € ¢(K). Let Ix denote the identity mapping on £(K). Since £(K) is finite
dimensional, we have

dim (ker (A — olk)) = dim (ker (4" — 0Ig)).

Thus, in order to establish the theorem, it suffices to prove the following two rela-
tions:

(5.1) dim (ker (T, — 0lp)) = dim (ker (A — o1x))
and
(5.2) dim (ker (S, — o)) = dim (ker (4’ — 0Ik)).

For this purpose, we introduce the sets K; (j =0,1,...) as follows:
Kj = Mj—1E1 +---+E+ K.

In particular, Ko = K. Evidently, K; C K11 for j =0,1,..., and R® = J}2, K;.
Moreover,

(5.3) MY (K; +suppa) C K;_1, i=12,....
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Indeed, we have MK + M~'Ey = K, and hence

M~YKj;+suppa) C M? 2B+ + By + M 'Ey + M 'K+ M 'Ex_4
CK;.

Suppose o # 0 and v € ker (T, — 0lp). Then suppv C K; for some j > 1. We
observe that T,v(a) # 0 implies Ma — 8 € supp a for some § € K. It follows that
a € M~ (suppa+K;) C K;_1, by (5.3). In other words, supp (T,v) C K;_;. Using
this relation repeatedly, we obtain supp (T7v) C K. But v = T,v/o0 = (Tiv)/o’.
Therefore, suppv C K, and v|gnz- belongs to ker (A — oIk). This shows that
the restriction mapping P : v — v|gnzs maps ker (T, — olp) to ker (A — olk).
Moreover, v|knzs = 0 implies v = 0. So P is one-to-one. Let us show that P is also
onto. Suppose Aw = ocw for some w € £(K). Define v(a) := w(a) for « € K NZ?°
and v(a) := 0 for a € Z° \ K. Then T,v = ov. Thus, P is one-to-one and onto,
thereby establishing (5.1).

In order to prove (5.2), we consider the mapping Q : u — u*|xnzs, where u* is
the sequence given by u*(c) := u(—c), a € Z°. Suppose u € ker (Sq — o). Then

u(a) = ! Z ala — MB)u(B), a€e?Z’.
pezs
It follows that
W)=~ w(Ba(MB—a), aeZ.
BeZs

Fora € K; (j > 1), a(MB—a) #0 only if 8 € M~ (suppa+ K;) C K;_1. Hence

(5.4) uw(a) = Z u*(B)a(MB — ) for a € K; NZ°.

ﬁEKjganS

S

This shows that u*|xnze belongs to ker (A’ — olx). Thus, Q maps ker (S, — o) to
ker (A’ — 0Ik). Moreover, if u*(a) = 0 for & € K NZ*, then it follows from (5.4)
that u*(a) = 0 for « € K; NZ% j =1,2,.... But R® = |JjZ, Kj; hence u*(a) = 0
for all & € Z°. Thus, the mapping @ is one-to-one. It is also onto. Indeed, if
w € kér(A’ — olk), then
wla) = % Z w(B)a(Mp — a), ae KNZ°.
BEKNZS

For a € KNZ° let u*(a) := w(a); for a € (K; \ Kj—1)NZ° (j =1,2,...), let
u*(c) be determined recursively by (5.4). Then u € ker (S, — ol) and Qu = w.
Thus, @Q is one-to-one and onto, so that (5.2) is valid. The proof of the theorem is
complete. O

A sequence u on Z° is called a polynomial sequence if there exists a polynomial
p such that u(a) = p(a) for all & € Z°. The degree of u is the same as the degree
of p. For a nonnegative integer k, let P be the linear space of all polynomial
sequences of degree at most k, and let

Vi := {v € 6(Z°) - Z pla)v(a) =0Vpe Hk}.

a€Zs
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For u € ¢(Z°) and v € £y(Z®), we define
(u,v) == Z u(a@)v(a).
a€Zs

Theorem 5.2. Let M be an s X s dilation matriz and Q a complete set of repre-
sentatives of the distinct cosets of 7Z°/MTZ°. For any a € {o(Z°), the following
statements are equivalent:

(a) The sequence a satisfies the sum rules of order k + 1.

(b) Vi is invariant under the transition operator Tg,.

(¢) Py is invariant under the subdivision operator S,.

(d) D*H(2m(MT)"tw) =0 for all |u| < k and allw € Q\ {0}.

Proof. (a) = (b): Let p € Il and v € V},. We have
Z () Tyv(a) = Z[Z (v)a(Ma — ﬂ)} (B).
Q€L BEZs acls
Let g(z) := p(M~'z), z € R®. Then p(z) = q(Mz), z € R*. By Taylor’s formula,
we have
q(Ma)=g(Ma—B+p)= Y q.(Ma-p)p",
lul<k
where g, := D*q/u! € IT;. Hence
> pl@)a(Ma—B) =Y q(Ma)a(Ma—p)= Y c,p",
Q€ a€Zs lul<k
where
Cp = Z qu(Ma - B)a(Mo — B)
agZs
is independent of 3, by condition (a). Thus, we obtain
Z ()T,v(a) = Z cuz,ﬁ'“v
a€Zs pi<k  Bezs

because v € V. This shows that T,v € Vj, for v € V. In other words, Vj is
invariant under T,.

(b) = (c): Suppose p € P,. We wish to show that u := S,p lies in P,. We claim
that (u,v) =0 for all v € V. Indeed,

(uv) = D ulap(a) = Y > ala—MBp(Bv(a)

a€Zs a€Zs BeLs
=" p(=8) > a(MB - a)u(-a) = > p(-Aw(B),
BeZs a€Zs BEZs

where w := T,v* with v* given by v*(a) = v(—a), o € Z®. Since V} is invariant
under T, and v* € V, we have w € V. It follows that
(u,0) = Y p(=Pw(p) =
BeZs

For a multi-index p with |u| = k + 1, we have V#§, € Vj, for all o € Z°. Hence
(u, V#8,) = 0. In other words, V#u(a) = 0 for all & € Z° and |u| = k + 1. This
shows that u is a polynomial sequence of degree at most k.
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(c) = (a): For p € Iy, let q(7) := >_gezs a(MB + ) p(MB + ) for v € Z°. We
claim that ¢ is a polynomial sequence. Indeed, by using Taylor’s formula, we have

p(MB+7) =Y tu(MB)Y",

|ul<k
where t,, := Dtp/ul. Set q,(8) :=t,(—Mp) for 8 € Z*°. Then for v € Z°,

a(7) = > a(MB+7)p(MB +7)

BEZs
=3 Y altv+ MB) au(-Ar* = Y (Sea) (1)1
BEZ® |u|<k [u|<E

Note that g, is a polynomial sequence of degree at most k. By condition (c), Saqu
is a polynomial sequence; hence so is g. We observe that ¢(y + Mn) = ¢(v) for all
n € Z° and v € Z°, that is, ¢ is a constant sequence on the lattice v+ MZ?* for each
~ € Z°. Hence ¢ itself must be a constant sequence. This verifies condition (a).
Finally, the equivalence between (a) and (d) was proved in Lemma 3.3. O

We remark that the equivalence between (c) and (d) was proved in [7, p. 98] for
the case when the dilation matrix M is 2 times the identity matrix.

6. SMOOTHNESS AND APPROXIMATION ORDER

In this section we discuss the relationship between approximation and smooth-
ness properties of a refinable function.

Suppose ¢ satisfies the refinement equation (1.1) with the dilation matrix M
being 2 times the identity matrix. It was proved by Jia in [18] that ¢ € WF(R?®)
and ngS(O) # 0 imply that II; C S(¢) and S(¢#) provides approximation order & + 1.
This result improves an earlier result of Cavaretta, Dahmen, and Micchelli about
polynomial reproducibility of smooth refinable functions (see [7, p. 158]).

- The above results can be extended to the case in which the dilation matrix is
isotropic. Let M be an sx s matrix with its entries in C. We say that M is isotropic
if M is similar to a diagonal matrix diag{A1,...,As} with [A\;| = -+ = |Xs]. For
example, for a,b € R, the matrix

a —b
<)

is isotropic. Obviously, a matrix M is isotropic if and only if its transpose M7T is
isotropic.
Lemma 6.1. Let M be an isotropic matrixz with spectral radius o. For any vec-

tor norm || - || on R?®, there exist two positive constants C; and Ca such that the
inequalities

Cro™ vl < |M™ ]| < Coo™|lv]|
hold true for every positive integer n and every vector v € R®.

Proof. Since M is isotropic, we can find a basis {v1, ... ,vs} for C® such that Mv; =

Ajv; with [A1| = -+ = |Xs] = 0. Recall that two norms on a finite-dimensional linear

space are equivalent. Hence there exist two positive constants C; and Cs such that
S S

S
C Z|a]~| < ||l £ CQZ |a;] for v = Zajvj.
Jj=1

=1 =1
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But for v = Y77, a;u; we have M™v = 37"_, a; }v;. It follows that

MMl < C2 " lagAp| = Cao™ Y la;| < CoCy o™ |lv]|

=1 j=1

and

[Mo]| = Cy Y laiAf| = Cro™ Y laj| = C1Cy o™ o]

=1 j=1

This completes the proof of the lemma.

Lemma 6.2. Let M be an isotropic matriz with spectral radius o. For an infinitely
differentiable function f on R®, let

fal€) == fF(MTYE),  €€R®, n=0,1,2,....
Then, for each positive integer r, there exists a positive constant C' depending only

on r and the matrix M such that

(6.1) ImIaXID"fn(g)I <Co™ lmlaxiD"f((MT)"gﬂ Ve e RS,
ul=r v|=r

Proof. Let B = (bpg)i<p,g<s be the matrix (MT)". By the chain rule, for j =
1,...,s, we have

Djfn(€) = (b1;D1 + -+ + by Ds) f((MT)™E), € €R®.
Hence, for a multi-index p = (u1,... ,us) with |u| =r,

8 8
D#fo(€) = [I D2 £a(€) = [] (0101 + -+ + bs; D)™ F((MTY"€), € €R®.
Jj=1 Jj=1
By Lemma 6.1, there exists a constant C; > 0 depending only on the matrix M
such that |bpe| < Cy0™ for all p,q. We may express H;zl(blle +-- 4 bs;Ds)H as
ZM:T ¢, DY, where each ¢, is a linear combination of products of r factors of the

bpe’s. Hence there exists a positive constant C' depending only on 7 and the matrix
M such that |c,| < Co™ for all |v| = r. This proves (6.1). O

Now we are in a position to establish the main result of this section.

Theorem 6.3. Suppose M is an s X s isotropic dilation matriz, and a is an ele-
ment in {y(Z°) satisfying (1.2). Let ¢ be the normalized solution of the refinement
equation (1.1). If ¢ € W (R®), then I, C S(¢) and S(¢) provides approzimation
order k+ 1.

Proof. Since ngS(O) = 1, in order to prove S(¢) D I, it suffices to show that for
|ul <k,

(6.2) DFY(2rB) =0 VB eZ\ {0}

The proof proceeds with induction on ||, the length of .
Let H be the function given in (3.2). A repeated application of (3.1) yields that,
forn=1,2,...,

0 = | TT (@m0 sy e, ecre



APPROXIMATION PROPERTIES OF MULTIVARIATE WAVELETS 663

It follows that
(6.3) H((MT)"E) = ha(£)9(E),  EER,

where h,(€) = [T;_; H((MT)7~'¢). Note that H is 2m-periodic and H(0) = 1.
Thus, we have

$(2m(M")"B) = [H H(zw(MT)j—lﬂ)] P(26m) = $(2BT), B EL’.
j=1

If ¢ € L1 (R®), then by the Riemann-Lebesgue lemma we obtain
$(287) = lim $(2r(MT)"B) =0 VB €2z \ {0}

This establishes (6.2) for p = 0.
Let 0 < r < k. Assume that (6.2) has been proved for |u| < r. We wish to
establish (6.2) for |u| = . For this purpose, we deduce from (6.3) that

P(€) = fal(€) [L/hn(8)],  EERS,

where f,(€) := ¢((MT)"¢), € € R*. By using the Leibniz formula for differentiation,
we get

CONE RN () LIACE AN GRS

v<p
But, for 8 € Z*\ {0} and |v| < r, we have D" f,(2r3) = 0, by the induction
hypothesis. When v = u, we have [1/h,](2r3) = 1. Hence it follows from (6.4)
that

(6.5) DH$(2mB) = D" f(2nB), B €Z°\{0}.
" By Lemma 6.2, we have
(6.6) | fu(2nB)| < C o™ max|D*g((MT)"2mB) |, B €27\ {0},

where C > 0 is a constant independent of n.

In what follows, we use v; to denote the jth coordinate of a vector v in R®. For a
multi-index v = (v1,... ,vs), let ¢, be the function given by ¢, (z) = (—iz)"¢(x),
z € R®. Then D"QAS = (;AS,, and

((—iD;)"6,) (&) = D 6(€), &= (&,... &) €R®.

Since ¢ € W{(R?), we have (—iD;)"¢, € L1 (R®). Thus, by the Riemann-Lebesgue
lemma, we obtain

lim ((MT)B), D*$(2m(MT)"B) =0 for 5 €Z°\ {0}.
This is true for j = 1,...,s; hence it follows that
lim |(MT)"B|" D" $(2m(MT)"B) =0 for §€Z°\ {0},
where || - || is a vector norm on R®. By Lemma 6.1, there exists a positive constant
C1 > 0 independent of n such that
Cro™[1Bl < 1M ™) Bl
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Therefore

lim o™ D"$(2r(MT)"B) =0  for B € Z°\ {0}.

n—oo

This in connection with (6.5) and (6.6) tells us that D*¢(2r3) = 0 for |u| = r and
B € Z° \ {0}. The proof of the theorem is complete. O

Recall that Q is a complete set of representatives of the distinct cosets of
7°/MTZ2. Thus, as a consequence of Theorem 6.3, we conclude that if the nor-
malized solution ¢ of the refinement equation (1.1) lies in WF(R*®), and if N(¢) N
(2m(MT)=1Q) = (), then the refinement mask a satisfies all the conditions in The-
orem 5.2.
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